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Preface

The new particle physics of the past 30 years, including electroweak theory,
quantum chromodynamics, grand unified theory, supersymmetry, supergravity
and superstring theory, has greatly changed our view of what may have happened
in the universe at temperatures greater than about 1015 K (100 GeV). Various
phase transitions may be expected to have occurred as gauge symmetries which
were present at higher temperatures were spontaneously broken as the universe
cooled. At these phase transitions topological defects, such as domain walls,
cosmic strings and magnetic monopoles, may have been produced. Various
types of relic particles are also expected. These may include neutrinos with
small mass and axions associated with the solution of the strong CP problem
in quantum chromodynamics. If supersymmetry exists, there should also be
relic supersymmetric partners of particles, some of which could be dark matter
candidates. If the supersymmetry is local (supergravity) these will include the
gravitino, the spin- 3

2 partner of the graviton. Insight may also be gained into
the observed baryon number of the universe from mechanisms for baryogenesis
which arise in the context of grand unified theory and electroweak theory.
Supersymmetry and supergravity theories may have scope to provide the particle
physics underlying the inflationary universe scenario that resolves such puzzles
as the extreme homogeneity and flatness of the observed universe. Superstring
theory also gives insight into the statistical thermodynamics of black holes. In
the context of superstring theory, bold speculations have been made as to a period
of evolution of the universe prior to the big bang (‘pre-big-bang’ and ‘ekpyrotic
universe’ cosmology).

These matters, amongst others, are the subject of this book. The book gives
a flavour of the new cosmology that has developed from these recent advances
in particle physics. The aim has been to discuss those aspects of cosmology that
are most relevant to particle physics. From some of these it may be possible to
uncover new particle physics that is not readily discernible elsewhere. This is a
particularly timely enterprise, since, as has been noted by many authors, the recent
data from WMAP and future data expected from Planck mean that cosmology
may at last be regarded as precision science just as particle physics has been for
many years.
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Chapter 1

The standard model of cosmology

1.1 Introduction

The principal concern of this book is the way in which recent particle physics,
including electroweak theory, quantum chromodynamics, grand unified theory,
supersymmetry, supergravity and superstring theory, has changed our standpoint
on the history of the universe when its temperature was greater than 1015 K. This
will be studied in the context of the Friedman–Robertson–Walker solution of the
Einstein equations of general relativity. In this chapter, therefore, our first task
is the derivation of the field equations relating the scale factor R(t) that appears
in the metric to the energy density ρ and the pressure p that characterize the
(assumed homogeneous and isotropic) energy–momentum tensor. This is done
in the following two sections. In section 1.4 we show how, for a given equation
of state, energy–momentum conservation determines the scale dependence of the
energy density and pressure. The standard solutions for the time dependence of
the scale factor in a radiation-dominated universe, in a matter-dominated universe,
and in a cosmological constant-dominated universe are presented in section 1.5;
we give an estimate of the age of the universe in the matter-dominated case in
section 1.6. In section 1.7, we present the evidence that there is, in fact, a non-
zero cosmological constant and discuss why its size is so difficult to explain. The
discussion of phase transitions and of relics that is given in later chapters also
requires a description of the thermodynamics of the universe. So in the following
two sections we describe the equilibrium thermodynamics of the expanding
universe and derive the time dependence of the temperature in the various epochs.
In section 1.10, we discuss briefly the ‘recombination’ of protons and electrons
that left the presently observed cosmic microwave background radiation. Finally,
the synthesis of the light elements that commenced towards the end of the first
three minutes is discussed in section 1.11. The consistency of the predicted
abundances with those inferred from the measured abundances determines the
so-called baryon asymmetry of the universe, whose origin is discussed at length
in chapter 4.
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2 The standard model of cosmology

1.2 The Robertson–Walker metric

The standard description of the hot big bang assumes a universe which is
homogeneous and isotropic with a metric involving a single function R(t),
the ‘scale factor’ (or ‘radius’ of the universe). The appropriate metric is the
Robertson–Walker metric

ds2 = dt2 − R2(t)

(
dr2

1− kr2
+ r2 dθ2 + r2 sin2 θ dφ2

)
(1.1)

where the (time and spherical polar) coordinates (t, r, θ, φ), called the ‘comoving’
coordinates, are the coordinates of an observer in free fall in the gravitational
field of the universe. The parameter k takes the values −1, 0, 1 corresponding
to a universe which has spatial curvature which is negative, zero or positive,
respectively. (This can be seen from the curvature scalar derived from the second
equality of (1.30) with a change in sign for Euclidean rather than Minkowski
space.) Units have been chosen in which the speed of light c is 1.

An immediate use of this metric is to calculate the size of regions of the
universe that have been in causal contact (in the sense that there has been the
possibility of causal influence occurring between points within the region at some
time between the big bang at t = 0 and time t). Causal influences cannot occur
over distances greater than the (proper) distance dH (t) that light has been able to
travel from the the big bang at t = 0 to the time t being studied. This distance
is called the ‘particle horizon’. Without loss of generality, consider emission of
a light signal from coordinate (r, θ, φ) at t = 0 to coordinate (0, θ, φ) at time t
along the (radial) geodesic with θ and φ constant. (It may be checked that this is
indeed a geodesic by using the coefficients of affine connection given in the next
section (exercise 1).) For a light beam, ds2 = 0 and we have

dt2

R2(t)
= dr2

1− kr2
. (1.2)

Thus, the largest value of r at t = 0 to be in causal contact with r = 0 at time t is
given implicitly by ∫ t

0

dt ′

R(t ′)
=

∫ r

0

dr ′√
1− kr ′2

. (1.3)

This equation determines the particle horizon. The proper distance to the particle
horizon at time t is

dH (t) = R(t)
∫ r

0

dr ′√
1− kr ′2

= R(t)
∫ t

0

dt ′

R(t ′)
. (1.4)
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The Robertson–Walker metric 3

We shall discuss the time dependence of the scale factor R(t) in the next section.
Equation (1.4) then allows us to calculate the particle horizon. For example, when

R(t) ∝ t2/3 (1.5)

as is the case for a matter-dominated universe, we get

dH (t) = 3t (1.6)

and for a radiation-dominated universe in which

R(t) ∝ t1/2 (1.7)

we get
dH (t) = 2t . (1.8)

For an inflationary universe, such as will be discussed in chapter 7,

R(t) ∝ eHt (1.9)

with H approximately constant, and then

dH (t) = 1

H
(eHt − 1). (1.10)

The Robertson–Walker metric also allows us to calculate the redshifting of
light from distant objects. Consider light, travelling on a radial geodesic, being
received at r = 0 at (around) the present time t = t0 from a distant galaxy at
r = r1. Suppose that two adjacent crests of a light wave are received at t = t0
and t = t0 + �t0 having been emitted from the distant galaxy at t = t1 and
t = t1 + �t1. Equation (1.3) applies but with appropriate modifications to the
limits of integration. Thus,∫ t0

t1

dt

R(t)
=

∫ r1

0

dr√
1− kr2

(1.11)

and ∫ t0+�t0

t1+�t1

dt

R(t)
=

∫ r1

0

dr√
1− kr2

. (1.12)

Subtracting gives ∫ t0+�t0

t1+�t1

dt

R(t)
=

∫ t0

t1

dt

R(t)
(1.13)

so that ∫ t0+�t0

t0

dt

R(t)
=

∫ t1+�t1

t1

dt

R(t)
. (1.14)
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4 The standard model of cosmology

Because the variation of R(t) on the time scale of an electromagnetic wave period
is very small, this equation may be approximated by

�t0
R(t0)

= �t1
R(t1)

. (1.15)

But �t0 and �t1 are the times between adjacent crests; in other words, they are
the periods of the waves. Thus, the waves have frequencies

ν0 = 1

�t0
and ν1 = 1

�t1
(1.16)

respectively and, in units where c = 1, wavelengths

λ0 = �t0 and λ1 = �t1 (1.17)

respectively. The redshift is usually defined by

z ≡ λ0 − λ1

λ1
(1.18)

and, from (1.15), we conclude that

1+ z = R(t0)

R(t1)
. (1.19)

Equations (1.19) and (1.17), reinterpreted in terms of photons, mean that a photon
emitted at time t1 undergoes a redshifting of its wavelength as the universe
expands, such that its wavelength at time t0 is increased by a factor R(t0)/R(t1).
Since the momentum (or energy) of the photon is inversely proportional to its
wavelength, the momentum (or energy) of the photon is reduced by a factor
R(t1)/R(t0) as a result of the expansion of the universe. This is often expressed
as energy of photons being redshifted away.

When |t1 − t0| is not too large, we can make the expansion

R(t1) = R(t0)+ (t1 − t0)Ṙ(t0)+ 1
2 (t1 − t0)

2 R̈(t0)+ · · ·
= R(t0)(1+ H0(t1 − t0)− 1

2 q0 H 2
0 (t1 − t0)

2 + · · ·) (1.20)

where

H0 ≡ Ṙ(t0)

R(t0)
(1.21)

is the present value of the Hubble parameter and q0 is the present deceleration
parameter

q0 ≡ − R̈(t0)

R(t0)H 2
0

= − R̈(t0)R(t0)

Ṙ(t0)2
. (1.22)

The redshift may also be expanded in powers of t1 − t0:

1+ z = (1+ H0(t1 − t0)− 1
2 q0 H 2

0 (t1 − t0)
2 + · · ·)−1 (1.23)
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Einstein equations for a Friedmann–Robertson–Walker universe 5

leading to

z = H0(t0 − t1)+
(

1+ q0

2

)
H 2

0 (t0 − t1)
2 + · · · . (1.24)

Since z is the physically measurable quantity, it is useful to invert (1.24). For
small z

t0 − t1 = 1

H0

[
z −

(
1+ 1

2
q0

)
z2 + · · ·

]
. (1.25)

Then, after expanding 1/R(t) in (1.11) in powers of t − t0, we may determine r1
as a function of z. Expanding (1.11) gives

1

R(t0)

[
(t0 − t1)+ 1

2
H0(t0 − t1)

2 + · · ·
]
= r1 + O(r3

1 ). (1.26)

Thus, in terms of the redshift,

r1 = 1

R(t0)H0

[
z − 1

2
(1+ q0)z

2 + · · ·
]

. (1.27)

We shall use this result in section 1.7 to calculate the ‘luminosity distance’ of a
(supernova) source as a function of the redshift.

1.3 Einstein equations for a Friedmann–Robertson–Walker
universe

It is straightforward to calculate the coefficients of affine connection for the metric
(1.1). The non-zero components are

�0
i j = − Ṙ

R
gi j �i

j0 =
Ṙ

R
δi j = �i

0 j (1.28)

�i
j k = 1

2 gil(∂k gl j + ∂ j glk − ∂l g jk). (1.29)

Here x i , i = 1, 2, 3, denotes the (spatial) coordinates (r, θ, φ). Equation (1.29)
is just the coefficients of affine connection for the three-dimensional subspace
(r, θ, φ). It is also straightforward to calculate the Ricci tensor Rµν from the
cofficients of affine connection (exercise 2). It has non-zero components

R00 = −3
R̈

R
and Rij = −

[
R̈

R
+ 2

Ṙ2

R2 +
2k

R2

]
gi j . (1.30)

The corresponding curvature scalar is

� ≡ gµν Rµν = −6

[
R̈

R
+ Ṙ2

R2 +
k

R2

]
. (1.31)
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6 The standard model of cosmology

The Einstein equations for the Robertson–Walker metric, usually referred to
as the Friedman–Robertson–Walker (FRW) universe, are

Rµν − 1
2�gµν = 8πGN Tµν +�gµν (1.32)

where GN is the Newtonian gravitational constant, Tµν is the energy–momentum
tensor and we are including a cosmological constant �. For a perfect fluid with
energy density ρ and pressure p, the non-vanishing components are

T00 = ρ and Ti j = −pδi j . (1.33)

The corresponding Einstein equations are, from the 00-component,(
Ṙ

R

)2

+ k

R2 =
8πGN

3
ρ + �

3
(1.34)

usually referred to as the ‘Friedmann’ equation, and, from the i j -components,

2
R̈

R
+
(

Ṙ

R

)2

+ k

R2
= −8πGN p +�. (1.35)

Subtracting (1.35) from (1.33) gives the equation for R̈

R̈

R
= −4πGN

3
(ρ + 3 p)+ �

3
. (1.36)

In the case � = 0, this equation implies that R̈ < 0 for all times1. Then, the
present positive Ṙ implies that Ṙ was always positive and, therefore, that R was
always increasing. Consequently, ignoring the effects of quantum gravity, there
was a past time when R was zero—the moment of the ‘big bang’.

Returning to the Friedmann equation (1.34) with zero cosmological constant,
the universe is spatially flat when

ρ = ρc = 3H 2

8πGN
= 3M2

P H 2 (1.37)

where H is the Hubble parameter,

H ≡ Ṙ

R
(1.38)

and MP is the reduced Planck mass given by

M2
P =

1

8πGN
= m2

P

8π
(1.39)

1 A positive value of the acceleration R̈ can only arise if � is positive.
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Scale factor dependence of the energy density 7

where m P is the Planck mass, and

MP � 2.44× 1018 GeV m P � 1.22× 1019 GeV. (1.40)

Since the Hubble parameter varies with time, so does ρc. The density parameter
� is defined as

� ≡ ρ

ρc
(1.41)

and measures the density as a fraction of the ‘critical’ density ρc. The current
value of �, denoted by �0, has a value [1]

�0 = 1.02± 0.02. (1.42)

1.4 Scale factor dependence of the energy density

There is also conservation of the energy–momentum tensor to take into account:

DνT µν = 0 (1.43)

where
DλV µ = ∂λV µ + �

µ
λρV ρ (1.44)

is the action of the covariant derivative Dλ on a contravariant index. The µ = 0
component of (1.43) yields (exercise 3)

ρ̇ + 3(ρ + p)
Ṙ

R
= 0. (1.45)

It is easy to see that this is just the first law of thermodynamics

dE + p dV = 0 (1.46)

for a comoving volume V ∝ R3(t).
The energy density ρ may be related to the scale factor R(t) once we have

the equation of state. If this is of the form

p = wρ (1.47)

then (1.45) leads to
ρ ∝ R−3(1+w). (1.48)

In particular, for w = 1
3 , corresponding to radiation (massless matter)

ρ ∝ R−4 radiation p = 1
3ρ. (1.49)

For w = 0, corresponding to massive matter,

ρ ∝ R−3 matter p = 0. (1.50)
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8 The standard model of cosmology

Equation (1.50) may be understood as a constant number of massive particles
occupying a volume expanding as R3(t) as the universe expands. Equation (1.49)
may be understood as the number density of photons (or other massless particles)
decreasing as R−3(t), as for massive matter but, in addition, the energy of each
photon decreasing as R−1(t) because of the redshifting of the photon energy
discussed in section 1.2. Another interesting case is w = −1, which gives

ρ = constant p = −ρ. (1.51)

This may be interpreted as vacuum energy and allows us to incorporate the
cosmological constant into the discussion without introducing it explicitly, if we
wish.

1.5 Time dependence of the scale factor

It is easy to solve the Friedmann equation (1.34) in the case of zero cosmological
constant and k = 0, a spatially flat universe. Both of these assumptions are
always good approximations for sufficiently early times because, as discussed
in section 1.4, ρ ∝ R−4 for radiation domination and ρ ∝ R−3 for matter
domination. Consequently, for a ‘big-bang’ universe with R → 0 as t → 0,
the 8

3πGN ρ term in (1.34) becomes more important than the k/R2 or �/3
terms. With the energy density ρ given by (1.48), the solution of (1.34) (provided
w 
= −1) is

R(t) ∝ t−
3
2 (1+w). (1.52)

In particular,

R ∝ t1/2 and H = 1
2 t−1 for radiation domination (1.53)

and

R ∝ t2/3 and H = 2
3 t−1 for matter domination. (1.54)

However, if at some stage in the history of the universe the cosmological constant
is (positive and) large enough to dominate over the energy density and curvature
terms in (1.34), then the Friedmann equation has the solution

R(t) ∝ e

√
�
3 t . (1.55)

This is the de Sitter universe.

1.6 Age of the universe

We shall estimate the age of the universe in the case � = 0. We shall also
assume a matter-dominated universe for the calculation. This is a reasonable
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Age of the universe 9

approximation because, as can be seen from section 1.8, the universe was matter-
dominated for most of its history. First, rewrite the Friedmann equation (1.34) in
terms of the value ρ0 of the energy density ρ today. From (1.50),

ρ

ρ0
=

(
R

R0

)−3

. (1.56)

Thus, the Friedmann equation may be written as(
Ṙ

R0

)2

+ k

R2
0

= 8πGN

3
ρ0

R0

R
. (1.57)

Next rewrite this in terms of the present value �0 of the density parameter (1.41):

�0 = ρ0

(3/8πGN )H 2
0

. (1.58)

Then, at t = t0, (1.57) gives

k

R2
0

= 8πGN

3
ρ0 − H 2

0 = H 2
0 (�0 − 1) (1.59)

where the last equality employs (1.58). Thus, the Friedmann equation may be
written as (

Ṙ

R0

)2

+ H 2
0 (�0 − 1) = �0 H 2

0
R0

R
. (1.60)

This may be rewritten in terms of the variable

x ≡ R

R0
(1.61)

as
ẋ2 + H 2

0 (�0 − 1) = �0 H 2
0 x−1 (1.62)

with solution

t = 1

H0

∫ x

0

dx ′√
�0(x ′−1 − 1)+ 1

. (1.63)

In particular, today, when R = R0, x has the value 1 and the current age of the
universe is

t0 = 1

H0

∫ 1

0

dx√
�0(x−1 − 1)+ 1

. (1.64)

We see that t0 ∼ H−1
0 with the precise value depending on the value of �0. For

example, for an exactly flat universe (which is not consistent with observations)
�0 = 1 and t0 = 2

3 H−1
0 . It is usual to write H−1

0 in the form

H−1
0 � h−19.78× 109 yr (1.65)
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10 The standard model of cosmology

where the parameter h is measured to have the value

h = 0.72± 0.05. (1.66)

Thus, the present age of the universe is

t0 ∼ 1010 yr. (1.67)

1.7 The cosmological constant

In 1917, attempting to apply his general theory of relativity (GR) to cosmology,
Einstein sought a static solution of the field equations for a universe filled with
dust of constant density and zero pressure. The general static solution of (1.34)
and (1.36) has

p = 1

3

(
�

4πGN
− ρ

)
(1.68)

and
k

R2
= 8πGN

3
ρ + �

3
. (1.69)

With zero cosmological constant (� = 0), the only solution of these equations,
apart from an empty, flat universe, requires that either the energy density ρ or the
pressure p is negative. It was this unphysical result that led him to introduce the
cosmological term. Then the solution for pressureless dust is

ρ = �

4πGN
(1.70)

and
k

R2
= �. (1.71)

Assuming that ρ is positive requires that � is positive, so that

k = +1 (1.72)

and

R = 1√
�

. (1.73)

Hence, the universe is closed and has the geometry of S3 with volume V and mass
M given by

V = 2π2 R3 = 2π2�−3/2 M = π

2GN
√

�
. (1.74)

A non-zero cosmological constant also allows non-trivial static (de Sitter)
solutions of the Einstein field equations with no matter (ρ = 0 = p) at all. It
was, therefore, a considerable relief in the 1920s when the redshifts of distant
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The cosmological constant 11

galaxies were observed, the presumption of a static universe could be abandoned
and there was no need for a cosmological constant.

However, anything that contributes to the energy density of the vacuum 〈ρ〉
acts just like a cosmological constant. This is because the Lorentz invariance
of the vacuum requires that the energy–momentum tensor in the vacuum 〈Tµν 〉
satisfies

〈Tµν〉 = 〈ρ〉gµν. (1.75)

Then, by inspection of (1.32), we see that the vacuum energy density contributes
8πGN 〈ρ〉 to the effective cosmological constant

�eff = �+ 8πGN 〈ρ〉. (1.76)

Equivalently, we may regard the cosmological constant as contributing �/8πGN

to the effective vacuum energy density

ρvac = 〈ρ〉 + �

8πGN
= �eff M2

P . (1.77)

Thus, a cosmological constant is often referred to as ‘dark energy’, not to be
confused with dark matter which contributes to the non-vacuum energy density
(and has zero pressure).

A priori, in any quantum theory of gravitation, we should expect the scale
of the vacuum energy density to be set by the Planck scale MP . Since � has
the dimensions of M2, it follows that we should have expected that �/M2

P ∼ 1.
We shall see that, in reality, the scale of any such energy density must be much
smaller. We noted in section 1.5 that the effect of the cosmological constant is
negligible at sufficiently early times, because the energy density ρ scales as a
negative power of R for radiation or matter domination. Thus, the most stringent
bounds arise from cosmology when the expansion of the universe has diluted the
matter energy density sufficiently. From the observation that the present universe
is of at least of size H−1

0 , we may conclude that

|�eff| � 3H 2
0 (1.78)

where
H−1

0 ∼ 1010 yr ∼ 1042 GeV−1 (1.79)

from (1.67). Then, in Planck units,

|�eff|
M2

P

� 10−120. (1.80)

For many years, this tiny ratio was taken as evidence that the cosmological
constant is indeed zero. However, during the past few years, evidence has
accumulated that � is, in fact, non-zero.
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12 The standard model of cosmology

The first evidence suggesting this came from measurements of the redshifts
of type Ia supernovae. Such supernovae arise as remnants of the explosion of
white dwarfs which accrete matter from neighbouring stars. Eventually the white
dwarf mass exceeds the Chandrasekhar limit and the supernova is born after the
explosion. The intrinsic luminosity of such supernovae is considered to be a
constant. That is, they are taken as standard candles and any variation in their
apparent luminosity as measured on earth must be explicable in terms of their
differing distances from the earth. In a Euclidean space, the apparent luminosity l
of a source with intrinsic luminosity L at a distance D from the observer is given
by

l = L

4π D2
. (1.81)

We may, therefore, define the ‘luminosity distance’ DL of a source from the
observer by

DL ≡
√

L

4πl
. (1.82)

In GR we must be more careful. So consider the circular mirror, area A, of a
telescope at the origin, normal to the line of sight to a source at r1. Light emitted
from the source at time t1 and arriving at the mirror at time t0 is bounded by a
cone with solid angle

ω = A

4π R(t0)2r2
1

(1.83)

as measured in the locally inertial frame at the source. The emitted photons have
their energy redshifted by a factor

R(t1)

R(t0)
= 1

1+ z
(1.84)

as explained in section 1.2, (see (1.18)). Also, photons emitted at time intervals of
δt1 reach the mirror at time intervals δt0 = δt1 R(t0)/R(t1). Thus, the total power
P received at the mirror is given by

P = L

(
R(t1)

R(t0)

)2

ω (1.85)

and the apparent luminosity by

l = P

A
. (1.86)

Then, using (1.27), the luminosity distance defined in (1.82) is

DL = H−1
0 (1+ z)

[
z − 1

2
(1+ q0)z

2 + · · ·
]

(1.87)

= 1

H0

[
z + 1

2
(1− q0)z

2 + · · ·
]

. (1.88)
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Figure 1.1. Hubble diagram giving the effective magnitude versus redshift for the
supernovae in the primary low-extinction subset. The full line is the best-fit flat-universe
cosmology from the low-extinction subset, the broken and dotted lines represent the
indicated cosmologies.

Hence, for nearby supernovae the luminosity distance is proportional to the
redshift of the source.

Astronomers measure the apparent magnitude m of the various supernovae
sources. The difference m − M , where M ∼ −19.5, is the (assumed constant)
intrinsic magnitude of the source, is just the logarithm of the luminosity distance.
So the apparent magnitude is predicted to be linear in ln z for small z. This is
consistent with the data for z � 0.1, see figure 1.1 taken from [2]. For more distant
supernovae the linear relationship between DL and z is distorted by quadratic
terms depending on the present deceleration parameter q0 of the universe. The
data for 0.7 � z � 1 do display such a distortion, see figure 1.1 [2].

For an FRW universe, it follows from (1.36) and the definition (1.22) of q0
that, in general, the deceleration may be written as

q0 = 1
2

∑
i

(1+ 3wi )�i (1.89)

for a universe with components labelled by i having energy density ρi and
pressure pi ≡ wiρi ; here �i ≡ ρi/ρc where ρc ≡ 3H 2

0 /8πGN is the
critical density. In particular, for a universe with just (pressureless) matter and
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14 The standard model of cosmology

Figure 1.2. 68%, 90%, 95%, and 99% confidence regions for �m and ��.

a cosmological constant, we get

q0 = 1
2�m −�� (1.90)

where �m ≡ ρm/ρc is the matter contribution and �� ≡ ρvac/ρc = �eff/3H 2
0 .

As noted previously, a negative value of q0, corresponding to an accelerating
universe, can only arise with a positive cosmological constant. The data shown in
figures 1.1 and 1.2 taken from [2] suggest that this is indeed the case.

The determination of �m and �� requires at least one further input. The
recent data on the temperature anisotropies of the cosmic microwave background
provide just such a constraint. Photons originating at the ‘last scattering surface’,
when matter and radiation decouple (see section 1.10), having a redshift z ∼
1300, are seen now as the microwave background. Quantum fluctuations in
the early universe give rise to fluctuations in the energy density of the radiation
and these appear as temperature fluctuations in the microwave background (see
section 7.7). These fluctuations may be analyzed by multipole moments, labelled
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The cosmological constant 15

by l, and are characterized by their power spectrum. The multipole number lpeak
of the first peak in the power spectrum is determined by the total matter content of
the universe. In fact, lpeak ∼ 220�0, where �0 ≡ ρ0/ρc measures the total energy
density ρ0 relative to the critical density. The measured position of the first peak
yields the value (1.42). Thus, for a universe with just matter and a cosmological
constant, we get

�m +�� ∼ 1. (1.91)

When this result is combined with the supernova and other data, it is found that

�m ∼ 0.3 �� ∼ 0.7. (1.92)

In Planck units, this means that

�eff

M2
P

= ρvac

M4
P

= ��
ρc

M4
P

� 0.8× 10−120. (1.93)

There is currently no known explanation of this extremely small number. It
corresponds to ρ

1/4
vac � 10−3 eV. It is generally believed that the particle physics

vacuum is the minimum of an effective potential in which the electroweak gauge
symmetry SU(2)L ×U(1)Y is spontaneously broken (see section 2.5). The value
of the effective potential at this minimum 〈ρ〉 has no effect on the particle physics.
By adding a constant V0 to the tree-level potential (2.93), it is easy to arrange that
the potential, including any radiative and temperature-dependent corrections, has
any desired value at the minimum. However, to do so requires the fine tuning of V0
to ensure that the value (1.93) is obtained and it is this fine tuning that is regarded
as unnatural and for which an explanation is sought. The obvious first approach
to the problem is to seek a symmetry that requires � = 0 and then to explore
mechanisms that break the symmetry only slightly. The only known symmetry
that requires a vanishing cosmological constant is global supersymmetry. The
(fermionic) supersmmetry generator Q satisfies the anticommutation relation

{Q, Q̄} = 2γ µ Pµ (1.94)

where Pµ is the energy–momentum vector. It follows [3] that, for any state |ψ〉,
〈ψ|P0|ψ〉 = 〈ψ|Qα Q∗α + Q∗α Qα|ψ〉 ≥ 0. (1.95)

Thus, the energy of any non-vacuum state is positive and the vanishing of the
vacuum energy defines a unique, supersymmetric vacuum state |0〉 that satisfies

〈0|P0|0〉 = 0 ⇔ Qα|0〉 = 0. (1.96)

In a supersymmetric theory, all particles have supersymmetric partners (called
‘sparticles’) having opposite statistics. That is to say, the sparticle associated with
a fermion is a boson and the sparticle associated with a boson is a fermion. The
sparticles associated with the quarks and leptons, called respectively ‘squarks’
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16 The standard model of cosmology

and ‘sleptons’, are (spin-0) scalar particles and, in a supersymmetric theory, they
must have the same mass and quantum numbers as the original particles. This
has the important consequence that the vanishing cosmological constant result is
unaffected by quantum effects, because supersymmetry ensures that any quantum
corrections arising from fermion loops, say, are cancelled by those that arise
from the bosonic loops of the associated sparticle. It has yet to be demonstrated
experimentally that supersymmetry has anything to do with reality. None of the
sparticles associated with the known particles has ever be seen. (It is hoped that
they will be discovered at the Large Hadron Collider (LHC).) Supersymmetry
(susy), if present at all, is therefore a broken symmetry. It then follows from
(1.95) that the vacuum energy is positive definite. The experimental limits on the
sparticle masses require that

msusy � 100 GeV. (1.97)

If something like this bound were to set the scale for ρvac, then

ρvac

M4
P

∼ 10−68. (1.98)

Although small compared with the O(1) expected in a generic quantum theory
of gravity, this is still very much larger than the value (1.93) derived from the
supernovae and Wilkinson Microwave Anisotropy Probe (WMAP) data. Thus,
if this were the only contribution to the vacuum energy density, we should be
confronted with an unmitigated disaster.

However, including gravity in any supersymmetric theory inevitably leads
to a supergravity theory, in which supersymmetry is a local, rather than a global,
symmetry. This is because in GR the momentum generator Pµ becomes a local
field generating diffeomorphisms of spacetime. Then, in a supersymmetric theory
incorporating GR, the supersymmetry generators too become local fields: this is
why supergravity emerges as the low-energy limit of string theory. The form
of the potential in a supergravity theory is given in section 2.8. The main
point to note is that, as in the case of global supersymmetry, supersymmetric
vacua are generally stationary points of this potential but that at such points the
vacuum energy density is now generally negative. Non-supersymmetric (scalar)
field configurations in which the energy density is zero do exist but (without
fine tuning) these are not generally stationary points of the potential. Thus,
supergravity does not solve the cosmological constant problem but it is no worse
than in non-supersymmetric theories.

In the absence of any theoretical insight into the origin of the smallness of the
cosmological constant, it is of interest to see whether ‘anthropic’ considerations
can shed any light on the issue. Using the ‘weak anthropic principle’, we seek
to determine which era or which part of the universe could support human life,
so that physicists exist to pose such questions. A large positive cosmological
constant leads to an exponentially expanding (de Sitter) universe, see (1.55).
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Equilibrium thermodynamics in the expanding universe 17

This exponential expansion inhibits the formation of the gravitationally bound
clumps of matter that are presumably a necessary precondition for life to evolve;
once the clumps are formed, the cosmological constant has no further effect.
Thus, the weak anthropic principle requires �eff to be small enough to allow
the formation of sufficiently large clumps of matter. Gravitational condensation
began in our universe at a redshift zc where zc ≥ 4. The energy density of
matter at that time was greater than the present matter density ρm by a factor
of R3(t0)/R3(tc) = (1+ zc)

3 ≥ 125. The cosmological constant has no effect so
long as it is dominated by the matter density. Thus, provided ρvac � 125ρm , the
vacuum energy density would not inhibit gravitational condensation. (A more
careful treatment [4] gives a further factor of 1

3π2.) We conclude that if the
anthropic principle accounts for the value of the (positive) cosmological constant,
then we should expect ρvac ∼ (10 − 100)ρm because there is no anthropic
reason for it to be smaller. This gives the prediction �� ∼ (10 − 100)�m, at
variance with the values (1.92) derived from the supernovae and WMAP data.
Nevertheless, it implies a much smaller value ρvac/M4

P than that given in (1.98)
which was derived from supersymmetry considerations.

In contrast, a negative cosmological constant does not affect gravitational
clumping. We see from the Friedmann equation (1.34) that if � is negative, the
expansion of the universe ceases (for a flat universe (k = 0)) when the matter
density term is cancelled by the cosmological constant. We have already noted
that the deceleration parameter q0 given in (1.90) is positive for � < 0. It follows
that after expansion has ceased, the universe begins to contract and, in fact, it
collapses to a singularity in a finite time T . It is easy to show (exercise 4) that

T = 2π√
3|�| . (1.99)

Anthropic considerations would then require that this leaves sufficient time for
life to evolve, say T � 1

2 H−1
0 where H−1

0 = √3/8πGN ρm is the Hubble time in
our universe. This would give

��

�m
�

(
4π

3

)2

. (1.100)

Again, this would entail a much smaller value of ρvac/M4
P than was obtained

from supersymmetry considerations. However, the supernovae data indicate a
universal acceleration rather than a deceleration. Thus, � is positive and the
previous bound is only of academic interest.

1.8 Equilibrium thermodynamics in the expanding universe

It makes sense to discuss equilibrium thermodynamics during most of the history
of the universe because reaction rates were much faster than the time scale for

Copyright © 2004 IOP Publishing Ltd



18 The standard model of cosmology

the expansion of the universe which is characterized by the Hubble time H−1.
As discussed in section 2.2, the pressure p, entropy density s and energy density
ρ due to a gas of ultrarelativistic particles (in which the temperature T is much
greater than all masses) are given by

p = π2

90
N∗T 4 (1.101)

s = 2π2

45
N∗T 3 (1.102)

ρ = π2

30
N∗T 4 (1.103)

where
N∗ = NB + 7

8 NF . (1.104)

The numbers NB and NF of bosonic and fermionic degrees of freedom are defined
after (2.19). The entropy S in a comoving volume R3(t)

S = s R3 (1.105)

is expected to be conserved because a homogeneous universe has no temperature
differences to generate heat transfer. (For an explicit proof of entropy
conservation, see section 3.4 of Kolb and Turner or section 15.6 of Weinberg in
the general references.) Thus, to the extent that the entropy density is dominated
by the ultra-relativistic particles

RT = constant (1.106)

while N∗ is constant. Equation (1.106) is valid even for a matter-dominated
universe because it is only the particles with mass m smaller than the temperature
T that are present in thermal equilibrium with appreciable number densities and
contributing to the entropy, although all particles contribute to the energy density.
In reality, RT will show small discontinuous changes as the temperature drops
below the mass of particular particle species. Subject to this caveat, equation
(1.53) for the time dependence of the scale factor now implies the following
connection between temperature and time for a radiation-dominated universe:

T ∝ t−1/2 for radiation domination. (1.107)

The constant of proportionality in this equation may be calculated from the
Friedmann equation. When RT is a constant,(

Ṙ

R

)2

=
(

Ṫ

T

)2

(1.108)

and, using (1.103), the Friedmann equation (1.34) may be rewritten as
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(
Ṫ

T

)2

= 8πGN

3

π2

30
N∗T 4 (1.109)

where we have neglected the cosmological constant and the curvature term, as in
section 1.5. This has solution

t = 1

2

(
90

π2 N∗

)1/2

MP T−2 (1.110)

� 1.51MP N−1/2∗ T−2. (1.111)

If, for example, the appropriate N∗ for T above 100 GeV is that of the SU(3) ×
SU(2) × U(1) standard model or that of the supersymmetric standard model,
then

N∗ = 427
4 or 915

4 (1.112)

respectively.
Equations (1.54) and (1.106) imply the following connection between

temperature and time for the matter-dominated, universe:

T ∝ t−2/3 for matter domination. (1.113)

For a matter-dominated universe,

ρ(T ) = 3M2
P H 2

0 �0

(
T

T0

)3

(1.114)

where we have used (1.56), (1.106), (1.58) and (1.40). Using (1.108), the
Friedmann equation (1.34) may be rewritten as(

Ṫ

T

)2

= H 2
0 �0

(
T

T0

)3

(1.115)

with solution

t = 2

3
(H0�

1/2
0 )−1

(
T

T0

)−3/2

. (1.116)

1.9 Transition from radiation to matter domination

As we have seen in (1.49) and (1.50), the energy density of radiation decreases as
R−4 as the universe expands whereas the energy density of matter decreases as
R−3. Thus, radiation domination gives way to matter domination at some point
in the expansion of the universe. For a matter-dominated universe, the energy
density is given by (1.114) and for a radiation-dominated universe by (1.103).
However, there is a subtlety in the interpretation of N∗ which must be taken into
account. We shall assume that the transition temperature is sufficiently low that
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20 The standard model of cosmology

the only relativistic particles are the photon and three neutrinos. Neutrinos drop
out of thermal equilibrium below about 1 MeV when the (weak) interaction rate
that keeps them in thermal equilibrium becomes less than the Hubble parameter.
(See section 5.2.) When the temperature drops below the electron mass (about
0.5 MeV), electrons and positrons annihilate via e+e− → γ γ , and the entropy of
the electron–positron pairs is transferred to the photons. However, no entropy is
transferred to the neutrinos, which are now decoupled. Before electron–positron
annihilation, we have

N∗ = 2+ 7
2 = 11

2 (1.117)

but afterwards we should take
N∗ = 2. (1.118)

Note that we are not keeping any contribution from the neutrinos because they
have now dropped out of thermal equilibrium and no longer contribute to the
entropy. If Tγ i and Tγ f are the photon temperatures before and after electron–
positron annihilation, conservation of entropy requires that

11
2 T 3

γ i = 2T 3
γ f (1.119)

so that
Tγ f

Tγ i
=

(
11

4

)1/3

� 1.4. (1.120)

However, the neutrinos do not share in this temperature increase. Thus, there is
an effective N∗ for the purpose of calculating the energy density of radiation

N∗,eff = 2+ 7
8 × 6× ( 4

11 )4/3 � 3.36. (1.121)

Note that the relativistic neutrinos still have an energy density that varies as R−4

as the universe expands, because their number density varies as R−3 and they
undergo redshifting of their energy as R−1. Thus, the neutrino energy density
also varies as T 4, where T is the photon temperature, i.e. the temperature in the
usual sense. Then, from (1.103), in the radiation-dominated universe below the
temperature at which e+e− annihilation occurs,

ρ(T ) = π2

30
N∗,effT

4. (1.122)

If the matter energy density of (1.114) and the radiation energy density
(1.103) are equal at a temperature Teq, we find that

Teq = 90M2
P H 2

0 �0

π2 N∗,effT 3
0

. (1.123)

Using (1.65), (1.121) and (1.40) gives

Teq = 5.68�0h2 eV. (1.124)
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With h given by (1.66) and �0 by (1.42), we have

Teq � 3 eV. (1.125)

This justifies the original assumption that the only relativistic particles are the
photon and three neutrinos.

1.10 Cosmic microwave background radiation (CMBR)

During the radiation-dominated era, the photons were in thermal equilibrium
with matter (at the same temperature) because of interaction with the charge
of the electrons and protons. We are making the approximation here that all
baryons in the universe at this time are in the form of protons. However,
eventually the electrons and protons combine into neutral atoms. (This is referred
to as ‘recombination’.) Thereafter, photons decouple from matter and evolve
at a temperature different from matter. In this way, black-body radiation at
the recombination temperature develops into black-body radiation in the present
universe at a lower temperature, because the temperature is proportional to the
mean photon energy and the energy of the photons has redshifted with the
expansion of the universe. Thus, for the photons,

T ∼ R(t)−1. (1.126)

The recombination temperature Trec may be estimated to be

Trec = 3575 K = 0.31 eV. (1.127)

Here, recombination has been defined as the point at which 90% of electrons
have combined with protons. (See, for example, section 3.5 of Kolb and Turner
in the general references.) We may calculate the time of recombination trec from
(1.116), noting that the universe has been matter dominated from the time of
recombination until the present by comparing (1.127) with (1.125). Using (1.42),
(1.65) and (1.66), with T0 = 2.73 K, gives

trec � 1.89× 105 yr. (1.128)

1.11 Big-bang nucleosynthesis

In chapter 4 we shall discuss possible explanations of the ‘observed baryon
asymmetry of the universe’:

η ≡ nB

nγ

� 6.4× 10−10 (1.129)
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where nB and nγ are the present number densities of baryons and photons.
Before doing this, it is important to understand the origin of this number whose
explanation has been and remains a major topic of research. For this reason we
shall outline here how this number emerges from measurements of the present
abundances of the light elements, specifically deuterium (D), helium (3He and
4He) and lithium (7Li). Light elements such as these and also tritium (T or 3H)
and beryllium (7Be) were formed in a primordial nuclear reactor. We shall see
that the process begins towards the end of the ‘first three minutes’, as the era was
so memorably described by Weinberg [5]. The first step is the formation of the
A = 2 nucleus deuterium via the process

np → Dγ (1.130)

conventionally written by nuclear physicists as p(n, γ )D. At earlier times, the
process goes in both directions. However, since there are more than 109 photons
for every nucleon in the universe at that time, any newly formed deuterium is
dissociated before it gets a chance to capture a neutron or proton and begin
building heavier nuclei. Thus, no appreciable deuterium density accumulates.
This ‘deuterium bottleneck’ persists until there are too few sufficiently energetic
photons to dissociate the deuterons before they can capture nucleons. The A = 3
nuclei 3He and 3H are then formed via

D(p, γ ) 3He : pD → 3He γ (1.131)

D(D, n) 3He : DD → 3He n (1.132)
3He(n, p) 3H : n 3He → 3H p (1.133)

and 4He via

T(D, n) 4He : DT → 4He n (1.134)
3He(D, p) 4He : D 3He → 4He p. (1.135)

Since there are no stable A = 5 nuclei, the synthesis of heavier nuclei requires
the 4He nuclei to interact with D, 3H or 3He, all of which are positively charged.
The Coulomb repulsion suppresses the reaction rates for such processes, thereby
ensuring that virtually all of the neutrons available for primordial nucleosynthesis
wind up in 4He, the most tightly bound of the light nuclei. Subsequently, the
processes T(4He, γ ) 7Li, 7Li(p, 4He) 4He, 3He(4He, γ ) 7Be and 7Be(n, p) 7Li
form more 4He and also small amounts of lithium and beryllium.

The first process p(n, γ )D is crucial, since an appreciable deuterium
abundance must be built up before the others can proceed; the neutron and proton
number densities are too low to allow the build-up of the other nuclear abundances
by direct many-body processes. Clearly, the original abundance of neutrons and
protons determines the light element abundances generated by these primordial
processes. However, light elements are also created and destroyed in stars,
supernovae and other astrophysical phenomena. Consequently, the light element
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abundances measured today differ significantly from those created in the first
three minutes. Because of this, the primordial abundances can only be inferred
from the observational data after corrections to allow for the effects of galactic
chemical evolution. The discussion of these is beyond the scope of this book.
Here we shall instead focus on the essential physics of the primordial processes.
Following Bernstein et al [6] and Sarkar [7], we shall present a semi-analytical
treatment that allows the 4He abundance to be calculated quite accurately. The
precise calculation of this and the other yields and, hence, of the present baryon
asymmetry requires a detailed numerical analysis which also will not be presented
here.

At sufficiently high temperatures (above a few MeV) neutrons and protons
are in kinetic and chemical equilibrium with, as follows from (1.129), a very
high value (O(1011)) of the entropy per nucleon. During this era the equilibrium
nuclear abundances are quite negligible. The first stage of nucleosynthesis is the
freeze-out of the weak interaction processes

nνe ↔ pe− ne+ ↔ pν̄e n ↔ pe−ν̄e (1.136)

that previously kept neutrons and protons in equilibrium. Kinetic equilibrium
requires equality of the temperatures of the particles:

Tn = Tp = Te = Tν = T (1.137)

and chemical equilibrium requires that the chemical potentials of the various
species satisfy

µn − µp = µe− − µνe = µν̄e − µe+ . (1.138)

The total rate λnp for converting neutrons to protons via these processes is the
sum of the individual rates:

λnp = λ(nνe → pe−)+ λ(ne+ → pν̄e)+ λ(n → pe−ν̄e) (1.139)

and the total rate λpn for the reactions that convert protons to neutrons is given by
detailed balance

λpn = λnpe−�m/T where �m = mn − m p = 1.293 MeV. (1.140)

(The difference arises because of the slightly different Boltzmann factors in the
neutron and proton equilibrium densities, see (4.19).) Let us denote the fractional
relative neutron abundance by Xn ≡ nn/nN , where nn is the neutron number
density and nN is the total nucleon number density nN ≡ nn + n p where n p

is the proton number density. Then the fractional relative proton abundance is
X p ≡ n p/nN = 1 − Xn . The evolution of Xn is determined by the balance
equation

Ẋn = λpn(1− Xn)− λnp Xn . (1.141)
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The equilibrium solution, found by setting Ẋn = 0, is

Xeq
n (t) = λpn(t)

�(t)
= 1

1+ e�m/T (t)
where � ≡ λpn + λnp . (1.142)

Thus, we may rewrite (1.141) as

Ẋn = −�(Xn − Xeq
n ). (1.143)

This shows that Xn is always between its initial value and Xeq
n . At early times

� is large compared to the rate of time variation of the individual rates and Xn

quickly tracks its equilibrium value Xeq
n (t). This persists until the scattering rate

�(t) decreases until it becomes comparable with the Hubble rate H (t) ≡ Ṙ/R =
−Ṫ /T . At this point, because of the expansion of the universe, the nucleons
become too dilute to maintain the chemical equilibrium, they decouple and the
number densities become ‘frozen’ at the values they have at decoupling. Thus,

Xn(tdec) � Xeq
n (tdec) = 1

1+ e�m/T (tdec)
. (1.144)

As explained in section 5.2, the decoupling (or freeze-out) occurs when the
temperature is

Tdec � 1 MeV. (1.145)

It is a remarkable coincidence that these two numbers, Tdec and �m (given in
(1.140)), are of the same order. The former derives from the interplay between
the weak and gravitational interactions, while the latter derives from the difference
between the u and d quark masses, which is of unknown origin but presumably
as a result of strong and electromagnetic effects. Because of this coincidence, a
substantial fraction (of order 20%) of the neutrons survive and this, in turn, results
in a significant amount of promordial helium formed in the early universe.

This calculation of the fractional relative abundance of neutrons when the
weak interactions decouple is only a rough estimate. For a more accurate estimate,
we must solve the balance equation (1.141). It is convenient to use the variable
y ≡ �m/T instead of t . In this era, the temperature T is related to the time t by
equation (1.111) with N∗ = 3.36, as shown in (1.121). Using (1.140), the total
decay rate is

�(y) � λnp(y)(1+ e−y) (1.146)

neglecting the neutron decay rate compared to the scattering rates. Bernstein et
al [6] have approximated λnp(y) by

λnp(y) � 2λ(nνe → pe−) � a

τn y5 (12+ 6y + y2) (1.147)

where a � 253 and τn � 887 s. is the neutron lifetime. Then the solution is

Xn(y) = Xeq
n (y)+

∫ y

0
dy ′ ey′ [Xeq

n (y′)]2 I (y, y′) (1.148)
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where

I (y, y′) = exp

[
−
∫ y′

y
dy ′′ dt ′′

dy ′′
λnp(y′′)(1+ e−y′′)

]
(1.149)

= exp[K (y)− K (y′)]. (1.150)

Using (1.147) gives (exercise 4)

K (y) = b

y3
[4+ 3y + y2 + (4+ y)e−y] (1.151)

where

b = a

√
10

N∗
3MP

πτn(�m)2 . (1.152)

The required integral is easily evaluated numerically and gives

Xn(y →∞) � 0.15. (1.153)

This asymptotic value is essentially achieved when y � 5 corresponding to
t � 20 s, and a temperature of T � 0.25 MeV.

The next stage of the process is the formation of deuterium. The rate for the
process np → Dγ exceeds the expansion rate of the universe until temperatures
of order 10−3 MeV, so that deuterium will be present in this epoch with its
equilibrium abundance. Using the non-relativistic number densities, analogous
to (4.19), gives the Saha equation for the deuterium abundance nD

nD

nnn p
= ND

Nn Np

(
2πm D

mnm pT

)3/2

e�D/T (1.154)

where ND = 3 and Np = Nn = 2 are the statistical factors, defined in section 2.2,
for the deuteron and nucleons, and

�D = m p + mn − m D � 2.23 MeV (1.155)

is the binding energy of the deuteron. Then the corresponding mass fractions

Xi ≡ ni Ai

nN
(1.156)

where An = A p = 1 and AD = 2 are, respectively, the mass numbers of the
nucleons and deuteron, satisfy

X D

Xn X p
= 24ζ(3)√

π

(
T

m p

)3/2

ηe�D/T (1.157)
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where η is defined in (1.129). A rough estimate of the temperature Tns at which
nucleosynthesis starts may be made by determining when X D/Xn X p becomes of
order one. Taking logarithms of (1.157) gives

�D

Tns
= − ln η + 6.27+ 3

2
ln

�D

Tns
(1.158)

which may be solved iteratively. With the (inferred) value given in (1.129), we
get

Tns � �D

33
� 0.068 MeV. (1.159)

The temperature at which nucleosynthesis starts is so much less than the deuteron
binding energy because η is so small. Since there are of order 1010 photons per
nucleon, there are enough high-energy photons in the Wien tail of the Planck
distribution to dissociate the deuterons until the temperature drops to much less
than the binding energy. A more careful estimate can be made [6] using the
rate equation for the deuterium abundance, with the onset of nucleosynthesis
being defined by Ẋ D = 0. This gives Tns � 0.086 MeV. Using (1.121), the
temperature–time relation (1.111) gives

t � 1.32

(
T

MeV

)−2

s (1.160)

so that nucleosynthesis begins when

tns � 178 s (1.161)

as immortalized by Weinberg [5]. The neutrons that survived when the weak
interactions decoupled have been depleted by beta-decay during the intervening
period. Thus, the relative abundance of neutrons surviving until the onset of
nucleosynthesis is

Xn(tns) � Xn(y →∞)e−tns/τn � 0.12. (1.162)

As explained earlier, nearly all of these neutrons wind up in 4He, because of its
large binding energy. If we assume that all of the neutrons are captured in 4He,
the mass fraction of primordial 4He, denoted Yp(

4He), is simply given by

Yp(4He) � 2Xn(tns) � 0.24 (1.163)

in excellent agreement with the data [8]

0.214 < Yp(
4He) < 0.242. (1.164)

The foregoing calculation shows how the primordial 4He abundance is
determined by the baryon asymmetry η. In principle, the same calculation
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determines η once the helium abundance has been measured. However, since
Yp(

4He) depends only logarithmically on η, as is apparent from (1.158), this does
not yield a very precise value for η. In contrast, when similar techniques are
applied to the (much smaller) primordial abundances of the other light nuclei,
specifically D, 3He, and 7Li, the dependence upon η becomes a power. It is a
testament to the success of the standard cosmological model that a single value
of η simultaneously fits the data on all primordial abundances and allows a much
more precise determination of the parameter. The value (1.129) of the parameter
that we use in chapter 4 is obtained from a simultaneous fit of the cosmological
parameters to all of these and other data, including the recent WMAP microwave
anisotropy data [1].

1.12 Exercises

1. Show that the radial path from coordinate (r, θ, φ) at t = 0 to coordinate
(0, θ, φ) at time t is a geodesic.

2. Verify that the Ricci tensor for the Robertson–Walker metric (1.1) has the
non-zero components given in (1.30).

3. Verify that the µ = 0 component of (1.43) gives (1.45). What information is
provided by the µ = i components?

4. For a flat FRW universe with pressureless matter and a negative cosmological
constant �, show that the universe collapses to a point singularity in a time

T = 2π√
3|�| .

5. Show that the solution of the balance equation (1.141) for the relative neutron
abundance has the form (1.148) with the integrating factor as given in
(1.150). Using the approximation (1.147), verify that the function K (y) is
given by (1.151).

1.13 General references

The books and review articles that we have found most useful in preparing this
chapter are:

• Kolb E W and Turner M S 1990 The Early Universe (Reading, MA:
Addison-Wesley)

• Weinberg S 1972 Gravitation and Cosmology: Principles and Applications
of the General Theory of Relativity (New York: Wiley)

• Weinberg S 1989 Rev. Mod. Phys. 61 1
• Sarkar S 1996 Rep. Prog. Phys. 59 1493, arXiv:hep-ph/9602260
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Chapter 2

Phase transitions in the early universe

2.1 Introduction

Elementary particle theory possesses gauge symmetries that are spontaneously
broken by scalar fields belonging to non-trivial representations of the gauge
group when these fields develop non-zero expectation values at the minimum
of the effective potential. In particular, the SU(2)L × U(1)Y gauge group of
electroweak theory is spontaneously broken to the U(1)em of electromagnetism
by the electroweak Higgs scalar expectation value. If grand unification to a
group larger than the SU(3)c × SU(2)L × U(1)Y of the standard model, e.g.
to SU(5), occurs at some energy scale, then the grand unified gauge group breaks
spontaneously to the standard model gauge group before this gauge group in turn
breaks to the U(1)em gauge group. Things may be more complicated than this,
with a sequence of spontaneous symmetry breakings to subgroups of the original
grand unified group.

As we shall see later in this chapter, finite temperature effects may result
in some other minimum of the effective potential being deeper than the absolute
minimum of the zero-temperature theory. Then, as the universe cools, it may
undergo a series of first- or second-order phase transitions between different
minima of the effective potential. Such transitions will occur at temperatures
corresponding to the scales of energy associated with the various spontaneous
symmetry breakings. In the case of the electroweak phase transition to the phase
with only U(1)em unbroken, the scale of temperature for the phase transition will
be of order 102–103 GeV and, in the case of a grand unified phase transition to a
phase with SU(3)c × SU(2)L ×U(1)Y unbroken, the phase transition will occur
at a temperature closer to the Planck scale, perhaps at about 1016 GeV. If the grand
unified theory breaks to SU(3)c× SU(2)L ×U(1)Y in stages through a sequence
of phase transitions, the additional phase transitions will occur at intermediate
scales.

In later chapters we shall see that these phase transitions can have a profound
effect on the history of the universe through a number of different processes. For
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example, topologically stable objects such as domain walls, cosmic strings and
magnetic monopoles can be formed when the ‘alignment’ of the spontaneous
symmetry breaking expectation value is different in adjacent causal domains.
These can make substantial contributions to the energy density of the universe.
Moreover, if supercooling occurs before the phase transition is completed, the
reheating that takes place when the phase transition occurs can greatly modify
pre-existing particle densities. In addition, if the universe spends some time with
positive vacuum energy (cosmological constant) before relaxing to a minimum
with zero vacuum energy, then rapid expansion can occur. Such an ‘inflationary’
stage in the history of the universe, to be discussed in later chapters, may explain
the extreme isotropy, homogeneity and flatness of the present day observed
universe. For all of these reasons it is important to understand any phase
transitions that may have occurred as the universe cooled.

In this chapter we shall begin by developing the partition function and
the effective potential for the gauge field theories at finite temperature [1–5]
before applying these methods to the Higgs model, as a warm-up, and then to
electroweak theory and grand unified theory. In each case, the nature of the phase
transitions that occur as the temperature of the universe drops will be studied.
We shall then extend the discussion to gauge theories with global supersymmetry
and local supersymmetry (supergravity). Finally, the nucleation of (stable) ‘true’
vacuum from (metastable) ‘false’ vacuum in first-order phase transitions will be
considered. This nucleation rate will control the extent of any supercooling that
occurs before the phase transition is complete.

2.2 Partition functions

One of the fundamental objects in the statistical thermodynamics of a finite
temperature system is the partition function Z defined by

Z = Tr e−β Ĥ (2.1)

where Ĥ is the Hamiltonian operator and

β = (kB T )−1 = T−1 (2.2)

in units where the Boltzmann constant kB is set equal to 1. The trace in (2.1)

means that we are to sum over the (diagonal) matrix elements of e−β Ĥ for all
independent states of the system. Once the partition function has been evaluated,
the (Helmholtz) free energy F is given by

Z = e−βF (2.3)

where, as usual in thermodynamics, F is related to the internal energy E and the
entropy S by

F = E − T S. (2.4)
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The pressure P and entropy are obtained from the free energy as

P = − ∂ F

∂V

∣∣∣∣
T

(2.5)

and

S = − ∂ F

∂T

∣∣∣∣
V

. (2.6)

As follows immediately from (2.4), the energy density ρ is given by

ρ = � + T s (2.7)

where � and s are the free energy and entropy densities, with

E =
∫

d3x ρ (2.8)

and so forth. Thus, in particular, a calculation of the partition function will provide
us with a determination of the energy density.

The partition function in a gauge field theory is most efficiently calculated
using path integral methods. It is not the business of the present book to develop
such methods which can be found developed at length elsewhere [1–5]. It
will suffice for our purposes here to to summarize the outcome for the various
contributions to the partition function.

The simplest contribution comes from the free (neutral) real scalar fields.
The Lagrangian density for such a field φ having mass m is given by

�(φ, ∂µφ) = 1

2

(
∂φ

∂ t

)2

− 1

2
(∇φ)2 − 1

2
m2φ2. (2.9)

In field theory at finite temperature, scalar fields φ(t, x) are replaced by fields
φ(τ, x) periodic in τ with period β,

φ(τ = 0, x) = φ(τ = β, x) (2.10)

where
τ = it . (2.11)

We shall use the usual convention of referring to non-zero temperature as ‘finite
temperature’. The partition function is formulated in terms of these periodic fields
as

Z = Ñ (β)

∫
periodic

�φ exp

[ ∫ β

0
dτ

∫
d3x �(φ, ∂̄µφ)

]
(2.12)

where

∂̄µφ ≡
(

i
∂φ

∂τ
,∇φ

)
(2.13)
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and Ñ (β) is a temperature-dependent normalization. The integral
∫
�φ is a path

integral. Such integrals may be thought of as the generalization of an integration∫∞
−∞ dy1

∫∞
−∞ dy2 . . .

∫∞
−∞ dyn over the finite number of components of an n-

component column vector y to an integration over the continuous infinity of
components of a function φ(τ, x). Evaluation of the path integral gives for the
contribution of a real scalar field to the free energy

−β F = ln Z

= −
∫

d3x
∫

d3 p

(2π)3

(
β

2

√
p2 + m2 + ln

[
1− exp

(
−β

√
p2 + m2

)])
.

(2.14)

When the mass of the scalar field is negligible compared with the temperature (an
ideal ultra relativistic gas of scalar particles), the free energy density simplifies to

� = −π2T 4

90
when T � m. (2.15)

For gauge vector bosons, there are some subtleties because, for a typical
choice of gauge, the Lagrangian involves all four degrees of freedom of the gauge
field Aµ(x) and also involves the Fadeev–Popov ghost fields which occur in the
construction of a consistent renormalizable theory but are not physical particles.
However, a massless vector field has only two degrees of freedom and the extra
degrees of freedom are not physical and cannot be in equilibrium with a heat bath
nor, of course, can the Fadeev–Popov ghosts. Fortunately there exist gauges in
which each gauge field has only two degrees of freedom and in which there are no
Fadeev–Popov ghosts and the partition function can be related to the Lagrangian
density in such a gauge. In any other gauge, it can be shown that one may continue
to use this expression for Z but with the form of the Lagrangian appropriate for
that gauge. In an arbitrary gauge the contribution of the two non-physical degrees
of freedom of the gauge field cancels the contribution from the Fadeev–Popov
ghosts. Then, the contribution to the free energy density from a massless vector
gauge field is found to be

� = −2π2T 4

90
. (2.16)

In the case of Dirac fields ψ , the corresponding development at finite
temperature involves fields ψ(τ, x) that are anti-periodic in τ in the interval
(0, β),

ψ(τ = 0, x) = −ψ(τ = β, x) (2.17)

and the contribution to the free energy density is

� = −7π2T 4

180
when T � m. (2.18)
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For massless fermions (with only one helicity state of the particle), the calculation
(using Weyl spinors) gives half of this answer.

Putting all of this together, the free energy density of an ideal ultra relativistic
gas (T � m) is given by

� = −
(

NB + 7

8
NF

)
π2T 4

90
(2.19)

where NB and NF are, respectively, the numbers of bosonic and fermionic degrees
of freedom. (NB = 1 for a real scalar field, NB = 2 for a real gauge field, NF = 4
for a Dirac particle where there are two helicity states for the particle and two for
the antiparticle and NF = 2 for a Weyl field.) The pressure, entropy density and
energy density follow from (2.5), (2.6) and (2.4).

P =
(

NB + 7

8
NF

)
π2T 4

90
(2.20)

s =
(

NB + 7

8
NF

)
2π2T 3

45
(2.21)

and

ρ =
(

NB + 7

8
NF

)
π2T 4

30
. (2.22)

2.3 The effective potential at finite temperature

In quantum field theory at zero temperature, the expectation value φc of a scalar
field φ (also referred to as the classical field) is determined by minimizing
the effective potential V (φc). The effective potential contains a tree-level
potential term, which can be read off from the Hamiltonian density, and quantum
corrections from various loop orders. The one-loop quantum correction is
calculated by shifting the fields φ by their expectation values φc and isolating the
terms �quad(φc, φ̃) in the Lagrangian density which are quadratic in the shifted
fields φ̃. If we write

V (φc) = V0(φc)+ V1(φc) (2.23)

where V0 is the tree-level contribution and V1 is the one-loop quantum correction
then, for a single scalar field,

exp

(
− i

∫
d4x V1(φc)

)
=

∫
�φ̃ exp

(
i
∫

d4x �quad(φc, φ̃)

)
(2.24)

where, as in section 2.2,
∫
�φ̃, denotes a path integral. (The derivation and

evaluation of (2.24) can be found elsewhere [1].)
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At finite temperature, as discussed in section 2.2, scalar fields φ(t, x) are
replaced by fields φ(τ, x) periodic in τ with period β, where β is given by (2.2).
We now write the finite-temperature effective potential V̄ (φc) as

V̄ (φc) = V̄0(φc)+ V̄1(φc) (2.25)

where V̄0 and V̄1 are the tree-level and one-loop terms and the expectation value
φc is now a thermal average. Then (2.24) is modified to

exp

(
−
∫ β

0
dτ

∫
d3x V̄1(φc)

)
=

∫
periodic

�φ̃ exp

(∫ β

0
dτ

∫
d3x �quad(φc, φ̃)

)
.

(2.26)
If gauge fields and fermion fields are included (but with only scalar fields being
given expectation values to avoid breaking Lorentz invariance), then (2.26) also
contains path integrals over the gauge fields and their associated Fadeev–Popov
ghosts, and over antiperiodic fermion fields.

It is convenient to separate the one-loop terms into the temperature-
independent part V̄ 0

1 (which is identical in form to V1) and the temperature-
dependent part V̄ T

1 and write

V̄1 = V̄ 0
1 + V̄ T

1 (2.27)

In general, for a theory involving scalar fields φi , gauge fields Aµ
a and Dirac

fermions ψr , after shifting the scalar fields by their expectation values, the terms
in the Lagrangian of quadratic order in the fields are of the form

�quad(φc, φ̃) = − 1
2 [M̂2

S(φc)]i j φ̃i φ̃ j + 1
2 [M̂2

V (φc)]ab Aµ
a Abµ

− [M̂F (φc)]rsψ̄rψs + 1
2 ∂̄µφ̃i ∂̄

µφ̃i

− 1
4 (∂̄µ Aν

a − ∂̄ν Aµ
a )(∂̄µ Aaν − ∂̄ν Aaµ)

− 1

2ξ
(∂̄µ Aµ

a )2 + ∂̄µη∗a ∂̄µηa . (2.28)

In (2.28), φc denotes the complete set of expectation values of scalar fields, φ̃i

denotes the shifted scalar fields and ∂̄µ is as in (2.13). Also, ηa are the Fadeev–
Popov ghost fields which have to be introduced in the construction of a consistent
renormalizable theory of gauge fields but do not correspond to physical particles
and ξ is the gauge-fixing parameter. For convenience, we have adopted the
Landau gauge ξ → 0 in which couplings of scalar fields to Fadeev–Popov ghosts
are avoided.

If the eigenvalues of the mass-squared matrices M̂2
S , M̂2

V and M̂2
F are

(M2
S )i ,(M2

V )a and (M2
F )r then the temperature-dependent one-loop term in the

effective potential V
T
1 takes the form

V
T
1 (φc) = T 4

2π2

∫ ∞

0
dy y2

{∑
i

ln

[
1− exp

(
−
√

y2 + T−2(M2
S)i

)]
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+
∑

a

(
3 ln

[
1− exp

(
−
√

y2 + T−2(M2
V )a

)]
− ln(1− e−y)

)
− 4

∑
r

ln

[
1+ exp

(
−
√

y2 + T−2(MF )2
r

)]}
. (2.29)

There are two limits in which V
T
1 is particularly simple. First, in the limit

when all mass-squared eigenvalues are very much greater than T 2 all terms in

V
T
1 approach zero exponentially and V

T
1 becomes negligible. (It is not obvious

that this is true of the ln(1 − e−y) term in (2.29). However, in a general gauge,

this term is replaced by ln[1− exp(−
√

y2 + ξT−2(M2
V )a)], where ξ is the gauge

parameter. If the limit T−2(M2
V )a → ∞ is taken before the limit ξ → 0, to

recover the Landau gauge, this term vanishes.)
Second, in the high-temperature limit where T 2 is very much greater than

the mass-squared eigenvalues, we may use

T 4

2π2

∫ ∞

0
dy y2 ln

[
1− exp

(
−
√

y2 + RT−2

)]
= −π2T 4

90
+ RT 2

24
− R3/2T

12π
− R2

64π2
ln

(
R

abT 2

)
− R2

16π5/2

∞∑
�=1

(−1)�
ς(2�+ 1)

(l + 1)!
(

R

4π2T 2

)�

where
ab = 16π2 ln( 3

2 − 2γE ) ln ab = 5.4076 (2.30)

and

T 4

2π2

∫ ∞

0
dy y2 ln

[
1+ exp

(
−
√

y2 + RT−2

)]
= 7π2T 4

720
− RT 2

48
− R2

64π2 ln

(
R

a f T 2

)
− R2

16π5/2

∞∑
�=1

(−1)�
ς(2�+ 1)

(l + 1)! (1− 2−2�−1)�

(
�+ 1

2

)(
R

4π2T 2

)�

where

a f = π2 ln

(
3

2
− 2γE

)
= ab

16
ln a f = 2.6351. (2.31)

Thus, in the high-temperature limit,

V
T
1 (φc) � − π2T 4

90

(
NB + 7

8
NF

)
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+ T 2

24

[∑
i

(M2
S)i + 3

∑
a

(M2
V )a + 2

∑
r

(MF )2
r

]
− T

12π

[∑
i

(M3
S)i + 3

∑
a

(M3
V )a

]
+ · · ·

= − π2T 4

90

(
NB + 7

8
NF

)
+ T 2

24
[tr M̂2

S (φc)+ 3 tr M̂2
V (φc)+ 2 tr M̂2

F (φc)]

− T

12π
[tr{M̂2

S (φc)}3/2 + 3 tr{M̂2
V (φc)}3/2] + · · · . (2.32)

where M̂2
S(φc), M̂2

V (φc) and M̂2
F (φc)are the scalar, vector and Dirac fermion mass

matrices of (2.28). (For fermions described by Weyl spinor fields there should be
no factor of 2 in front of the M̂2

F term in (2.32).) The T 4 term in (2.32) is just the
free energy density for an ideal ultra relativistic gas (in agreement with (2.19) with
NB and NF respectively the number of bosonic and fermionic degrees of freedom,
in the sense described following (2.19). If some fields are heavy and some are
light on the scale of the temperature T , then NB and NF should be interpreted
as the degrees of freedom of light fields, and the traces over the mass matrices
should be evaluated only for light fields, since heavy fields do not contribute, as
discussed earlier.

2.4 Phase transitions in the Higgs model

Before studying phase transitions in electroweak theory and grand unified theory,
we warm up on the simpler case of the Higgs model. The Higgs model is the
theory of a complex scalar field coupled to a U(1) gauge field, which may be taken
to be the electromagnetic field, with the U(1) gauge symmetry spontaneously
broken. In other words, it is scalar electrodynamics with spontaneously broken
electromagnetic gauge symmetry. The finite-temperature Lagrangian density is

� = D̄µφ D̄µφ∗ − m2φ∗φ − λ

4
(φ∗φ)2 − 1

4
F̄µν F̄µν

− 1

2ξ
(∂̄µ Aµ)2 + ∂̄µη∗∂̄µη (2.33)

where

F̄µν ≡ ∂̄µ Aν − ∂̄ν Aµ (2.34)

D̄µφ ≡ (∂̄µ + ieAµ)φ (2.35)

and
D̄µφ∗ ≡ (∂̄µ − ieAµ)φ∗ (2.36)
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with ∂̄µ as in (2.13). The Fadeev–Popov ghosts η cancel contributions to the free
energy from the two non-physical degrees of freedom of the gauge field Aµ, as
discussed in section 2.2, and ξ is the gauge-fixing parameter. For spontaneous
symmetry-breaking to occur (without requiring radiative corrections to drive it),
m2 must be negative.

To derive the finite-temperature effective potential using the methods of
section 2.3 it is necessary to shift the scalar field by its expectation value. We
write

〈φ〉 = φc√
2

(2.37)

where the factor of 1/
√

2 has no significance but has simply been introduced for
convenience, and φc may be taken to be real because of gauge invariance. Then
real fields φ1 and φ2 are introduced through

φ = 1√
2
(φc + φ1 + iφ2). (2.38)

The quadratic terms in the shifted Lagrangian density are

�quad = − 1

2

(
m2 + 3λ

4
φ2

c

)
φ2

1 −
1

2

(
m2 + λ

4
φ2

c

)
φ2

2

+ e2

2
φ2

c Aµ Aµ + 1

2
(∂̄µφ1)

2 + 1

2
(∂̄µφ2)

2

− 1

2ξ
(∂̄µ Aµ)2 + ∂̄µη∗∂̄µη (2.39)

where we have adopted the Landau gauge ξ → 0 which removes an Aµ∂̄µφ2
cross term. Then, in the notation of (2.28),

M̂2
S (φc) = diag

(
m2 + 3λ

4
φ2

c , m2 + λ

4
φ2

c

)
(2.40)

and
M̂2

V (φc) = e2φ2
c . (2.41)

The nature of the phase transition depends on the relative sizes of e4 and λ.

2.4.1 e4 � λ

The tree-level contribution V 0( φc) to the effective potential may be read from
(2.33) by replacing φ by its expectation value 1√

2
φc and is

V 0(φc) = m2

2
φ2

c +
λ

16
φ4

c . (2.42)
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The zero-temperature one-loop correction V
0
1 of (2.27) and (2.23) has

contributions proportional to λ2 and e4 from different loop diagrams. Provided

that λ is small and that, in addition, e4 � λ, V 
0
1 may be neglected compared to

the tree term (2.42). In the high-temperature limit,

T 2 � λφ2
c e2φ2

c − m2 (2.43)

the one-loop temperature-dependent contribution to the effective potential V 
T
1

obtained from (2.32) is given by

V 
T
1 (φc) = −4π2T 4

90
+ (λ+ 3e2)T 2

24
φ2

c − 
CT

3
φ3

c + · · ·  (2.44)

where

4πC = tr[M̂2
S(φc)]3/2 + 3 tr[M̂2

V (φc)]3/2

=
(

m2φ−2
c + 3λ

4

)3/2

+
(

m2φ−2
c + λ

4

)3/2

+ 3e3 (2.45)

�
(

3λ

4

)3/2

+
(

λ

4

)3/2

+ 3e3 (2.46)

when λφ2
c � m2. Thus, the complete effective potential to one-loop order is given

by

V (φc) = −4π2T 4

90
+ 1

2
m2(T )φ2

c − 
CT

3
φ3

c +
λ

16
φ4

c (2.47)

where a temperature-dependent mass m2(T ) has been defined by

m2(T ) = m2 + (λ+ 3e2)T 2

12
. (2.48)

The expectation value φc of the scalar field is obtained by minimizing the
effective potential. For sufficiently high temperatures, there is only one solution
of

∂V

∂φc
= 0 (2.49)

namely
φc = 0 (2.50)

and this is a minimum so long as m2(T ) is positive. From (2.48), we see that this
is the case provided the temperature T exceeds T0 where

T 2
0 ≡

−12m2

λ+ 3e2 . (2.51)

(See figure 2.1, curve A.) We may write
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(φ )V c

φc

A

C

B

Figure 2.1. The finite-temperature effective potential for the Higgs model when e4 � λ.
Curves A,B,C are for T > T1, T = Tc and T < T0 respectively.

m2(T ) = m2

(
1− T 2

T 2
0

)
. (2.52)

A maximum and a second (local) minimum of V develop at non-zero values of
φc when

m2(T ) ≤ C2T 2

λ
(2.53)

and this happens when the temperature drops below T1 where

T 2
1 ≡

T 2
0

1+ C2T 2
0 /λm2

= −12λm2

λ(λ+ 3e2)− 12C2 > T 2
0 . (2.54)

The second minimum is at

φc = v(T ) ≡ v

 CT√
λ|m| +

(
1− T 2

T 2
1

)1/2
 (2.55)

where

v ≡ 2|m|√
λ

(2.56)
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and the mass m H (T ) of the Higgs particle associated with the fluctuations around
this minimum is given by

m2
H (T ) ≡ ∂2V

∂φ2
c

∣∣∣∣
φc=v(T )

= CT v(T )− 2m2(T ). (2.57)

In the same way, we may define a temperature-dependent vector boson mass by

mV (T ) ≡ ev(T ). (2.58)

When the second local minimum first arises, the global minimum of V is still at
φc = 0. However, as the temperature falls, there is a critical temperature Tc at
which the second minimum becomes degenerate with the global minimum. (See
figure 2.1, curve B.) This occurs when

8
9 C2T 2 = λm2(T ) (2.59)

which gives

T 2
c ≡

T 2
0

1+ 8C2T 2
0 /9λm2

= 9T 2
0

1+ 8T 2
0 /T 2

1

= −12λm2

λ(λ+ 3e2)− 32C2/3
(2.60)

so that T1 > Tc > T0. At temperatures below the critical temperature, the
minimum at non-zero φc is the global minimum of V and the system is in a phase
with spontaneous symmetry breaking, referred to as the asymmetric phase. The
value of φc at the global minimum changes discontinuously from φc = 0 to

φc = v(Tc) = 8CTc

3λ
(2.61)

as the temperature passes through T = Tc, so that there is a first-order phase
transition. As the temperature falls below T = T0, m2(T ) becomes negative, the
local minimum at φc = 0 turns into a local maximum and the only minimum is
at the non-zero value of φc = v(T ). (See figure 2.1, curve C.) All of this occurs
because C 
= 0. For future reference, we note that if C is zero or so small that
v(Tc) � v, then T1 � Tc � T0, and there is effectively a (continuous) second-
order phase transition at temperature T = Tc.

2.4.2 e4 � λ

When the gauge coupling constant is larger relative to the φ4 coupling constant,
there are two differences in the treatment required. First, the zero-temperature
correction to the effective potential may no longer be negligible and, second, it
may not be correct to make the high-temperature approximation that T is very
much larger than the masses of all (shifted) fields.
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If we now include the zero-temperature radiative correction, the complete
finite-temperature effective potential becomes

V̄ (φc) = m2

2
φ2

c +
λ

16
φ4

c + Bφ4
c

[
ln

(
φ2

c

M2

)
− 25

6

]
+ V̄ T

1 (φc) (2.62)

where M is a renormalization scale which may, if we wish, be eliminated in favour
of the value of φc at the zero-temperature minimum of V̄ and

B = 1

64π2

(
5

8
λ2 + 3e4

)
. (2.63)

Renormalization has been carried out according to

d2V̄

dφ2
c

∣∣∣∣
φc=0

= m2 d4V̄

dφ4
c

∣∣∣∣
φc=M

= 3

2
λ. (2.64)

(Details of the derivation of the zero-temperature radiative correction may be
found elsewhere [1].) If λ is small and λ � e4, then λ4 is negligible compared to
e4 and B simplifies to

B � 3e4

64π2
. (2.65)

With the mass-squared matrices of (2.40) and (2.41) for the (shifted) scalar and
vector fields, and not making the high-temperature approximation,

V
T
1 (φc) = T 4

2π2

∫ ∞

0
dy y2

{
ln

[
1− exp

(
−
√

y2 + T−2(m2 + 3λφ2
c /4)

)]
+ ln

[
1− exp

(
−
√

y2 + T−2(m2 + λφ2
c /4)

)]
+ 3 ln

[
1− exp

(
−
√

y2 + T−2e2φ2
c

)]
− ln(1− e−y)

}
. (2.66)

We now ask whether we should use the high-temperature approximation to
study the phase transitions when e4 � λ. If we do use the high-temperature
approximation (and neglect the zero-temperature radiative correction for the
moment) then, as before, the critical temperature is given by (2.60). If e2 < 1
(as in scalar electrodynamics), then, when e4 � λ, we certainly have e2 � λ and
e3 � λ3/2, so

C � 3e3

4π
. (2.67)

and

T 2
c �

−4m2

e2
(2.68)
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At the zero-temperature asymmetric minimum, still neglecting the radiative
corrections,

φ2
c = v2 = −4m2

λ
(2.69)

so that

T 2
c � m2 + λ

4
φ2

c = 0 (2.70)

and

T 2
c � m2 + 3λ

4
φ2

c = −2m2. (2.71)

However, when e4 � λ,

T 2
c � m2

V = e2v2 = −4m2

e2

e4

λ
. (2.72)

Therefore, it is not correct to use the high-temperature approximation for the
vector boson terms when e4 � λ.

Taking account of this observation, we now compute the values of the
effective potential at the symmetric and asymmetric minima to decide which is
the absolute minimum when both exist. At the symmetric minimum, φc is zero
and the high-temperature approximation is valid provided only that T 2 � −m2.
Thus,

V (φc = 0) = V
T
1 (φc = 0) � −4π2T 4

90
. (2.73)

At the asymmetric minimum, φc = v, the contribution to V
T
1 (φc) involving

the gauge field mass eφc is exponentially suppressed but the high-temperature
expansion may still be used for the scalar field terms. Thus,

V
T
1 (φc = v) � −2π2T 4

90
+ T 2

24
(−2m2)− T

12π
(−2m2)3/2. (2.74)

Dropping the zero-temperature radiative correction for the moment,

V (φc = v) = −m4

λ
− π2T 4

45
− m2T 2

12
− T

12π
(−2m2)3/2 (2.75)

where we have assumed that the value of the effective potential at the asymmetric
minimum is the same as at zero temperature apart from the terms proportional to
T 4, T 2 and T . This can be shown to be correct apart from corrections of higher
order in e2. Neglecting the m2T 2 term and the (−2m2)3/2 term compared with
the T 4 term, it can now be seen that the symmetric minimum is at a lower value
of V than the asymmetric minimum when

T >

(
45

π2λ

)1/4

|m| ≡ Tc1 (2.76)
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(φ )V c

φc

D

C

B

A

Figure 2.2. Development of asymmetric minimum with temperature in Higgs models
for 4π2λ/11 � e4 � λ. Curve A is at zero temperature, curve B is at Tc , the
critical temperature for the first order phase transition, and C and D correspond to higher
temperatures.

This is illustrated in figure 2.2.

The phase transition now occurs, in principle, at T = Tc1 and, because the
value of the expectation value undergoes a discontinuous change from 0 to v, the
phase transition is now first order. As the system cools the phase transition to
the asymmetric phase may not occur in practice until T is much less than Tc1
because of the need to tunnel through the potential barrier between the symmetric
minimum and the asymmetric minimum.

When the zero-temperature radiative corrections are taken into account the
situation can change. The effective potential of (2.62) can be recast (exercise 1)
in terms of the value v of φc at the zero-temperature (asymmetric) minimum of
the effective potential, including radiative corrections, as

V̄ (φc) = B

(
α

2
v2φ2

c −
α + 2

4
φ4

c + φ4
c ln

φ2
c

v2

)
+ V̄ T

1 (φc) (2.77)

where

α = 2B−1
(

22

3
B − λ

8

)
. (2.78)
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(φ )V c

φc

D

C

B

A

Figure 2.3. Development of asymmetric minimum with temperature in Higgs models for
e4 � 4π2λ/11. Curve A is at zero temperature, curve B is at Tc , the critical temperature
for the first-order phase transition and C and D correspond to higher temperatures.

The physical Higgs scalar mass m H is given by

m2
H =

d2V̄

dφ2
c

∣∣∣∣
φc=v

= 2Bv2(4− α). (2.79)

The case of symmetry breaking at zero temperature driven by radiative
corrections, discussed by Coleman and Weinberg [6], corresponds to α = 0, i.e.
to

m2
H = m2

C W = 8Bv2. (2.80)

When m2
H < m2

C W (α > 0), the situation differs qualitatively from that just
described because there is a local minimum of the effective potential at φc = 0
due to radiative corrections already present at T = 0. Then, we must take account
of the zero-temperature radiative corrections in deriving the development of the
effective potential with temperature. This is illustrated in figure 2.3.

The case α > 0, where this is necessary, corresponds to

e4 >
4

11
π2λ. (2.81)
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2.5 Phase transitions in electroweak theory

In electroweak theory, the phase transition to be studied is often from a phase
where the SU(2)L×U(1)Y gauge group is unbroken to one in which only U(1)em

is unbroken, i.e. it is from a phase in which the gauge fields mediating the weak
interactions are massless as well as the photon, so that the weak interactions
are long range like the electromagnetic interaction, to a phase in which only the
electromagnetic interaction is long range. The Lagrangian density for electroweak
theory has a pure gauge field part

�gauge = − 1
4 W a

µνW aµν − 1
4 Bµν Bµν (2.82)

where the gauge-fixing term and the Fadeev–Popov ghosts have been omitted,

W a
µν ≡ ∂µW a

ν − ∂νW a
µ − gεabcW b

µW c
ν (2.83)

and
Bµν ≡ ∂µ Bν − ∂ν Bµ. (2.84)

In (2.82) and (2.83), Ww
µ (a = 1, 2, 3) are the three gauge fields associated with

the generators of SU(2)L and Bµ is the gauge field associated with U(1)Y . The
electromagnetic field is the superposition

Aµ = cos θW Bµ + sin θW W 3
µ. (2.85)

After spontaneous symmetry breaking to U(1)em , Aµ remains massless but the
othogonal combination

Zµ = − sin θW Bµ + cos θW W 3
µ (2.86)

together with
W±

µ = W 1
µ ± iW 2

µ (2.87)

becomes massive. When Aµ is correctly coupled to the electromagnetic current
with strength e, the Weinberg angle θW obeys

g sin θW = e = g′ cos θW (2.88)

where g and g′ are the gauge coupling constants for SU(2)L and U(1)Y .
The SU(2)L×U(1)Y gauge symmetry is spontaneously broken by the Higgs

doublet (under SU(2)L ) introduced by writing

H =
(

H+
H 0

)
(2.89)

with weak hypercharge Y = 1/2. The Higgs boson part of the Lagrangian density
(including the couplings to the gauge fields) is given by

�Higgs = (Dµ H )†(Dµ H )− m2 H †H − λ(H †H )2 (2.90)
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where the covariant derivative of H is

Dµ H = (∂µ + ig 1
2τa W a

µ + ig′ 12 Bµ)H (2.91)

and τa, a = 1, 2, 3, are the Pauli matrices. If the expectation value for the Higgs
doublet is introduced by writing

〈H 〉 =
(

0
φc/
√

2

)
(2.92)

the zero-temperature tree-level term in the effective potential is

V 0(φc) = m2

2
φ2

c +
λ

4
φ4

c . (2.93)

Including the zero-temperature and one-loop contributions, and assuming that T 2

is large compared with all shifted masses, we have, for the complete effective
potential,

V (φc) = 1

2
m2(T )φ2

c −
1

3
CT φ3

c +
λ

4
φ4

c −
(

NB + 7

8
NF

)
π2T 4

90

+ Bφ4
c

(
ln

φ2
c

M2
− 25

6

)
(2.94)

with

m2(T ) = m2 +
λ

2
+ e2(1+ 2 cos2 θW )

4 sin2 2θW
+
∑

f

h2
f

12

 T 2 (2.95)

where h f are the Yukawa couplings of the fermions, with the largest contribution
coming from the top quark. Retaining only the gauge boson contributions to the
φ3

c term, which is expected to be a reasonable approximation provided that the
mass of the Higgs particle is not too much larger than the Z boson, we have

C = 3e3(1+ 2 cos3 θW )

4π sin3 2θW
. (2.96)

Dropping the λ2 contributions to the radiative corrections, which are always
perturbatively negligible compared with the tree terms,

B = 3

4

(
e2

4π

)2
1+ 2 cos4 θW

sin4 2θW
− 1

64π2

∑
f

h2
f . (2.97)

To study the nature of the phase transition, it is important to determine the sign of
B . At zero temperature, (2.94) is of the same form as (2.62) with λ replaced by
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4λ and can be cast in the form (2.77) with the same replacement in (2.78). A little
calculation (exercise 2) shows that, when B > 0 and α > 0, the zero-temperature
effective potential always has a minimum at φc = 0, in contrast to the situation
when radiative corrections are neglected where there is a maximum at φc = 0 and
a minimum at φ2

c = −m2/λ.
However, when B < 0, there can only be a minimum at φc = 0 if α < 0.

However, α < 0 is ruled out by the requirement that the mass-squared m2
H

of the physical neutral Higgs scalar particle given in (2.79) should be positive.
Thus, there is never a minimum at φc = 0 when B < 0 and the situation is
then qualitatively the same as in the absence of the zero-temperature radiative
corrections: the phase transition is first order.

The sign of B may be determined as follows. We shall retain only the largest
Yukawa coupling which is the top quark coupling ht . (Retaining more Yukawas
only strengthens the conclusion.) The corresponding Lagrangian is

�top = −ht QT
t iτ 2 H tR + h.c. (2.98)

where Qt is the SU(2)L doublet

Qt =
(

t
b

)
L

. (2.99)

Taking account of the three colours of top quark contributing to the loop,
∑

f G4
f

is replaced by 3h4
t in (2.97). The top-quark mass term deriving from (2.98) is

ht tLtRφc/
√

2+ h.c., so the top quark mass is

mt = 1√
2

htφc. (2.100)

Also, the W and Z masses are given at tree-level by

m2
W = 1

4 g2φ2
c m2

Z = 1
4 sec2 θW g2φ2

c . (2.101)

With a measured top quark mass of about 175 GeV, and an empirical value
of sin2 θW determined by the measured W and Z masses of 0.243, so that
φc � 263 GeV, we find that

ht � 0.94. (2.102)

With e2/4π = 1/137, we find from (2.97) that B is negative.
We also have to decide whether it is correct to assume that T 2 is large

compared with all (shifted) masses. Using the high-temperature expansion and
neglecting the zero-temperature radiative corrections, we see from (2.95) that, as
in (2.60),

1

T 2
c
= − 1

m2

λ

2
+ e2(1+ 2 cos2 θW )

4 sin2 2θW
+ h2

t

4
− e6

8π2λ

(
1+ 2 cos3 θW

sin3 2θW

)2


(2.103)
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where, again, we have retained only the top-quark Yukawa coupling. Provided
e2 � λ � e6, we estimate

T 2
c � −2m2. (2.104)

As in the Higgs model, the shifted masses for the Higgs scalars are of order
−m2 and the high-temperature approximation is not too unreasonable. The
greatest danger for the high-temperature approximation in the Higgs model with
e4 � λ arose from the gauge field mass. In the present case, dropping λ/2
in the numerator of (2.103) and using the value of φ2

c at the zero-temperature
asymmetric minimum φ2

c = −m2/λ, we can estimate that

T 2
c

m2
W

� 2
λ

e2

T 2
c

m2
Z

� 1.5
λ

e2
. (2.105)

Thus, if λ � e2 � 0.09, the high-temperature approximation may again be not
too unreasonable.

This discussion suggests that the electroweak phase transition is effectively
second order, because C , defined in (2.45), is small in the sense discussed at the
end of section 2.4.1. For T > Tc, the system is in the symmetric phase in which
φc = 0 and all gauge bosons are massless. For T < Tc, the system is in the
asymmetric phase for which φc 
= 0, the W± and Z gauge bosons acquire a
mass and the symmetry is broken from SU(2)L ×U(1)Y to U(1)em . The critical
temperature Tc given by (2.103) is of the same order of magnitude as the zero-
temperature value of φc at the asymmetric minimum of the effective potential
provided that λ � e2. It was estimated before (2.102) that φc � 263 GeV and so
Tc should be of this order of magnitude.

2.6 Phase transitions in grand unified theories

Electroweak theory combines the weak and electromagnetic interactions in a
single model with SU(2)L × U(1)Y gauge group but achieves no unification
of these interactions with the strong interaction. It is possible that the weak,
electromagnetic and strong interactions are unified in a theory involving a larger
gauge group (a grand unified theory or GUT), perhaps with a single gauge
coupling constant. Once such a unification has been assumed, the coupling
constants g, g′ and gs (the QCD coupling constant) are related by group theory
factors to a single GUT coupling constant gG for the grand unified group. The
values of the renormalized coupling constants depend on the renormalization
scale M and, if the coupling constants g(M), g′(M) and gs(M) obey the gauge
theoretic relationships of the grand unified group at one such scale M = MG , they
cannot obey these relationships at lower energy scales. This is because at energy
scales below MG the extra gauge fields associated with the enlargement of the
gauge group to the grand unified group may be ignored. (They acquire masses on
the scale of MG .) Then g(M), g′(M) and gs(M) run differently with M when the
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renormalization group is deployed to derive their dependence on M . However,
for energy scales greater than MG , all gauge fields are on the same footing and
there is a single gauge coupling constant gG developing in accordance with the
renormalization group equation of the GUT.

The simplest example of a grand unified group that is large enough to contain
SU(3)c × SU(2)L ×U(1)Y of the standard model is SU(5) and we shall use this
example to illustrate phase transitions in GUTs. If the renormalization group
equations are used to run the low-energy values of the gauge coupling constants
to the scale M = MG at which the SU(5) relationships

gs(MG ) = g(MG ) =
√

5
3 g′(MG ) = gG(MG ) (2.106)

hold, then upon inputting the values of the strong and electromagnetic coupling
constants at M = m Z , the unification scale is found to be of order 1015 GeV.
In addition, there is a prediction for sin2 θW (m Z ) at M = m Z of around 0.21,
which differs significantly from the observed value of around 0.23. Nevertheless,
we shall use the SU(5) GUT as a simple illustration of the way in which phase
transitions work in a GUT. In section 2.7, we shall consider supersymmetric GUTs
in which the prediction for sin2(m Z ) can be brought into line with experiment to
a high degree of accuracy.

In the SU(5) GUT, the grand unified phase transition is from the SU(5)

symmetric phase to the SU(3)c × SU(2)L × U(1)Y symmetric phase and is
followed at a lower temperature by the electroweak phase transition described
in the previous section. We expect the critical temperature for the grand unified
phase transition to be of order 1015 GeV (the energy at which the spontaneous
symmetry breaking occurs) and, at such high temperatures, the expectation values
of the electroweak Higgs scalars (of order 200 GeV) are negligible. Thus, to
describe the grand unified phase transition we need only retain the Higgs scalars
responsible for breaking the SU(5) gauge group, whose expectation values are on
the 1015 GeV scale.

The grand unified Higgs scalars � belong to the 24-dimensional adjoint
representation of SU(5):

� =
24∑

a=1

φata (2.107)

where ta are the SU(5) generators in the fundamental five-dimensional
representation. Suppressing the gauge-fixing term and the Fadeev–Popov ghost
term, the finite-temperature Lagrangian density (apart from a possible tr �3 term)
is

� = −m2
1 tr �2 − λ1(tr �2)2 − λ2 tr �4 + tr(D̄µ�)2 − 1

2 tr(F̄µν F̄µν). (2.108)

In (2.108), the covariant derivative Dµ� is given by

Dµ� = ∂µ�+ igG[Aµ,�] (2.109)
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where

Aµ ≡
24∑

a=1

Aaµta (2.110)

with Aaµ the gauge fields in the adjoint representation of SU(5), and the transition
to a finite-temperature theory is made by the replacement of ∂µ by ∂̄µ, as in (2.13).
The gauge field strength Fµν is given by

Fµν ≡ ∂µ Aν − ∂ν Aµ + igG[Aµ, Aν] (2.111)

with the transition to the finite temperature being made in the same way. The
fermionic terms have been dropped in (2.108) because quark and lepton masses
are negligible on the grand unified scale.

For the breaking of SU(5) to SU(3)c × SU(2)L × U(1)Y , we take the
expectation value of the field � to be of the form

〈�〉 = φc√
15

diag

(
1, 1, 1,−3

2
,−3

2

)
. (2.112)

(〈�〉 must be traceless because the matrices ta are.) This can be shown to be the
lowest energy state at zero temperature for

λ1 > − 7

30
λ2 λ2 > 0. (2.113)

The finite-temperature effective potential can then be written, for temperatures
large compared to all masses, as

V̄ (φc) = 1

2
m2

1(T )φ2
c +

1

4

(
λ1 + 7

30
λ2

)
φ4

c −
(

NB + 7

8
NF

)
π2T 4

90

+ Bφ4
c

[
ln

(
φ2

c

M2

)
− 25

6

]
(2.114)

where

m2
1(T ) = m2

1 +
1

60
(130λ1 + 47λ2 + 75g2

G)T 2 (2.115)

B = 25

256π2
g4

G (2.116)

and the zero-temperature radiative correction has been renormalized at mass M as
in section 2.4. In (2.114) the λ2

1 and λ2
2 contributions are always small compared

with the tree terms in (2.114) and have been dropped.
If g4

G � λ1, λ2 we may neglect the zero-temperature radiative correction.
There is then a second-order phase transition with critical temperature Tc given
by

T 2
c =

−60m2
1

130λ1 + 47λ2 + 75g2
G

. (2.117)
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For T > Tc, the system is in the SU(5) symmetric phase, for which φc = 0, and
all gauge bosons are massless. For T < Tc, φc is non-zero, the system is in the
SU(3)c × SU(2)L × U(1)Y symmetric phase, and only the electroweak gauge
bosons are massless. By the same sort of argument as in the previous section, Tc

should be of order 1015 GeV.
However, if g4

G � λ1, λ2, then a discussion similar to that given for the
Higgs model in section 2.4 shows that a first-order phase transition takes place.
In the case of a GUT, this conclusion is not negated by Yukawa couplings of
fermions giving additional contributions to the coefficient B , because quarks and
leptons do not couple to the grand unified Higgses. This is an important difference
compared with the electroweak phase transition.

2.7 Phase transitions in supersymmetric GUTs

If elementary particle theories possess supersymmetry, then each (complex scalar)
spin-0 particle is paired with one chirality of a spin- 1

2 particle in the same so-
called ‘chiral supermultiplet’ and each spin-1 vector particle is paired with a
spin- 1

2 particle of a single chirality in the same so-called ‘vector supermultiplet’.
The quarks and leptons have supersymmetric partners referred to as ‘squarks’
and ‘sleptons’, the Higgs scalars have supersymmetric partners referred to as
‘Higgsinos’ and the gauge bosons are paired with ‘gauginos’. In the absence
of supersymmetry breaking, particles in the same supermultiplet have the
same mass. Of course, since at the time of writing we have not observed
supersymmetric partners of the known particles (‘sparticles’), there must be some
(spontaneous) supersymmetry breaking to produce substantial mass splittings
within supermultiplets.

The presence of these extra sparticles can be very important for the
discussion of phase transitions at temperatures large compared to the sparticle
masses. In addition, the supersymmetry transformations transforming particles of
different spin within a supermultiplet into each other strongly constrain the form
of the Lagrangian and the tree-level effective potential, with further implications
for phase transitions. These supersymmetry transformations may be local or
global depending respectively on whether the parameters of the transformation
do or do not depend on the point in spacetime. In this section the case of globally
supersymmetric GUTs will be discussed [7–12] and the locally supersymmetric
(supergravity) case will be discussed in the next section. (For a systematic
development of globally and locally supersymmetric theories see [14].)

In general, in a supersymmetric theory, the Lagrangian and the tree-level
effective potential are determined once the superpotential W is given. For
example, for a theory with a single scalar field φ together with its supersymmetric
partner, the superpotential for a renormalizable theory takes the form

W = 1
2 mφ2 + 1

3λφ3 (2.118)
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the bosonic part of the Lagrangian density is

�bosonic = ∂µφ†∂µφ −
∣∣∣∣∂W

∂φ

∣∣∣∣2 (2.119)

and the tree-level effective potential is

V =
∣∣∣∣∂W

∂φ

∣∣∣∣2 = |mφ + λφ2|2. (2.120)

In a supersymmetric SU(5) GUT, the generalization of this renormalizable
superpotential is

W = 1
2 m tr �2 + 1

3λ tr �3 (2.121)

with � defined in (2.107), and the tree-level effective potential is

V = 1
2 tr |m�+ λ(�2 − 1

5 tr �2 I)|2 + g2
G tr([�,�†]2). (2.122)

The last term in (2.122) is the so-called ‘D-term’ that arises in a supersymmetric
gauge theory and the first term, which is independent of the gauge group, is
referred to as the ‘F-term’. At T = 0 (and in the absence of supersymmetry
breaking), the effective potential (2.122) has degenerate minima (exercise 3) with
V = 0, namely

〈�〉 = 0 (2.123)

〈�〉 = m

3λ
diag(1, 1, 1, 1,−4) (2.124)

and
〈�〉 = m

λ
diag(2, 2, 2,−3,−3). (2.125)

The minima (2.123), (2.124) and (2.125) correspond respectively to SU(5)

symmetric, SU(4) × U(1) symmetric and SU(3) × SU(2) × U(1) symmetric
phases.

At finite temperature, the degeneracy of these supersymmetric minima is
lifted by the T 4 terms and by T 2 tr(�†�) = ∑

a
1
2 |φa|2T 2 terms. As in (2.32),

the coefficient of the T 4 term depends on the value of NB + 7
8 NF for states

light on the scale of the temperature T . For the SU(5) symmetric phase, the
24 gauge fields together with their gauginos contribute 90 towards NB + 7

8 NF .
Each fermion generation has three doublets of left-chiral quarks, one for each of
the three colours, six right-chiral quarks, a left-chiral lepton doublet, and a right-
chiral (charged) lepton. These give nG = 3 copies of the 5̄ + 10 representation
of SU(5). These three generations of quarks and leptons, together with their
associated squarks and sleptons, contribute 675

4 to NB + 7
8 NF . In total, this gives

the coefficient of the T 4 term in the temperature-dependent effective potential

−π2

90

(
NB + 7

8
NF

)
= −23

8
π2 SU(5) symmetric phase. (2.126)
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For the SU(3)×SU(2)×U(1) symmetric phase, the 12 gauge fields together
with their associated gauginos contribute 45 towards NB + 7

8 NF and, for the
SU(4)×U(1) symmetric phase, the 16 gauge fields together with their gauginos
contribute 60 towards NB + 7

8 NF . In each of these two cases, the matter field
content is the same as for the SU(5) symmetric phase and we find that

π2

90

(
NB + 7

8
NF

)
= −19

8
π2 SU(3)× SU(2)×U(1) symmetric phase

(2.127)

π2

90

(
NB + 7

8
NF

)
= −61

24
π2 SU(4)×U(1) symmetric phase. (2.128)

If a copy of 5 + 5̄ is included to provide the two electroweak Higgs doublets
(plus Higgsinos) needed to give masses to both up-like and down-like quarks in
a supersymmetric theory, then there is an additional contribution −5π2/12 to
(2.126) and −π2/6 to (2.127), in the latter case from the two SU(2)L doublets
that are all that survive from the 5 + 5̄ after spontaneous symmetry breaking of
SU(5) by the expectation values of the adjoint Higgs scalars. (The surviving
adjoint Higgs scalar states are too heavy to contribute to the temperature-
dependent corrections to the effective potential for temperatures below the grand
unification scale.) In the SU(4)×U(1) phase, the complete 5+5̄ becomes massive
and fails to contribute to the temperature-dependent corrections. The values of
π2

90 (NB + 7
8 NF ) in (2.126),(2.127) and (2.128) are then modified to 79

24π2, 61
24π2

and 61
24π2, respectively. Thus, the T 4 term favours the SU(5) symmetric phase

over the SU(3) × SU(2) × U(1) and SU(4) × U(1) symmetric phases, which
remain on the same footing. This conclusion is only strengthened by the inclusion
of the adjoint Higgs supermutiplet which provides extra light states in the SU(5)

symmetric phase. If the theory contains more than one pair of Higgs multiplets
coming from 5 + 5̄, then the SU(5) symmetric phase continues to be favoured
over the other two phases but the SU(3) × SU(2) × U(1) symmetric phase is
favoured over the SU(4) × U(1) symmetric phase, which is the assumption we
shall make in what follows.

Clearly, the SU(5) symmetric phase, for which the scalar expectation value
is zero, minimizes the T 2φ2

c term as well as the T 4 term. Thus, the theory
appears to favour the SU(5) symmetric phase at all temperatures. However,
at temperatures below 100 GeV–1 TeV the (non-perturbative) supersymmetry
breaking mechanism will lift the degeneracy of the three phases more than
the temperature-dependent terms and may favour the SU(3) × SU(2) × U(1)

symmetric phase. At higher temperatures the temperature-dependent terms
dominate. This suggests that the universe is in an SU(5) symmetric phase down
to temperatures of 100 GeV–1 TeV.

This conclusion is modified by the running of the gauge coupling constant
g5 for SU(5) with temperature. This may result in g5 becoming strong at
temperatures of order 109–1010 GeV. Then, confinement may result in fewer
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massless states. (The SU(5) coupling becomes strong at a higher temperature
than the SU(4) and SU(3) couplings.) Then one of the other two phases may
become the absolute minimum and, eventually, tunnelling may occur to one of
the other phases. In general, running coupling constants ga(µ) and ga(M) at
energy scales µ and M are related by

16π2g−2
a (µ) = 16π2g−2

a (M)+ ba ln

(
M2

µ2

)
(2.129)

where the renormalization group coefficient ba is given by

ba = − 11
3 c1(Ga)+ 2

3

∑
Ra

c2(Ra)+ 1
3

∑
Sa

c2(Sa). (2.130)

In (2.130), the group theory factor c1(Ga) for the group Ga is related to the
structure constants fαβγ by

c1δαβ = fαγ δ fβγ δ (2.131)

the group theory factor c2(Ra) for the representation Ra of the group is given in
terms of the matrices Tα representing the generators of Ga in the representation
Ra by

c2δαβ = tr(TαTβ) (2.132)

and the summations are over chiral fermion representations Ra of Ga and scalars
in representations Sa of Ga . For a supersymmetric theory, each gauge field is
accompanied by a gaugino in the adjoint representation, so that

− 11
3 c1(Ga)→− 11

3 c1(Ga)+ 2
3 c1(Ga) = −3c1(Ga). (2.133)

Also, each chiral fermion is accompanied by a complex scalar so that

2
3 c2(Ra)→ 2

3 c2(Ra)+ 1
3 c2(Ra) = c2(Ra). (2.134)

Thus, in a supersymmetric theory

ba = −3c1(Ga)+
∑
Ra

c2(Ra) (2.135)

where the sum is over all chiral supermultiplets. Identifying the energy scale µ

in (2.129) with T , and recasting the renormalization group equations in terms of
αa ≡ g2

a/4π , gives

α−1
a (T ) = α−1

a (M)+ ba

2π
ln

(
M

T

)
. (2.136)

For SU(5),

c1(SU(5)) = 5 c2(5) = c2(5̄) = 1
2 c2(10) = 3

2 . (2.137)
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With nG = 3 generations in 5̄+ 10 and NH sets of Higgs scalars in 5, we have

b5 = −9+ 1
2 NH (2.138)

and, for NH = 2,
b5 = −8. (2.139)

It is convenient to choose

M = MX = 2× 1016 GeV (2.140)

which is the energy scale at which the low-energy (supersymmetric) SU(3) ×
SU(2)×U(1) coupling constants reach a common value so that grand unification
may occur. At this scale,

α5(MX ) � 1
25 . (2.141)

If we take the criterion for the SU(5) coupling constant to become strong to be
α5(T ) � 1, then the corresponding temperature is

T � 6.5× 10−9M � 108 GeV. (2.142)

It is at this temperature that we expect that either the SU(3) × SU(2) ×U(1) or
the SU(4) ×U(1) symmetric phase becomes the absolute minimum. Eventually
tunnelling will occur to whichever of these phases is the absolute minimum. If it is
the SU(3)×SU(2)×U(1) symmetric phase, then the universe will continue in this
phase until the coupling constant g4 becomes strong at some lower temperature.

In these globally supersymmetric theories, because the zero-temperature
effective potential is zero when supersymmetry is unbroken, the cosmological
constant is zero in each of the SU(5), SU(4)×U(1) and SU(3)× SU(2)×U(1)

phases until supersymmetry breaking becomes non-negligible (with respect to T )
for temperatures below 102–103 GeV.

2.8 Phase transitions in supergravity theories

Up to now we have been discussing theories with global supersymmetry. A
theory with local supersymmetry is necessarily a theory which contains gravity
(supergravity). The reason is that the supersymmetry algebra contains the
generator Pµ of translations and when we allow supersymmetry transformations
that depend on the point in spacetime (local supersymmetry), we have to consider,
among other things, translations that vary from point to point in spacetime. Thus,
local supersymmetry contains general coordinate transformations of spacetime
and so is a theory of gravity.

In phenomenologically acceptable theories, the supersymmetry breaking
scale Ms is large (typically 1010–1011 GeV) where M2

s is the expectation value
of the auxiliary field of the scalar responsible for supersymmetry breaking. For
example, in theories with F-term supersymmetry breaking, at tree level, a fermion
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has a supersymmetric partner of lower mass than itself as well as one of higher
mass than itself. Since this does not occur in the real world, it is necessary
for there to be significant quantum corrections to avoid this problem, though
not so big that the hierarchy problem is no longer solved. This is the origin
of the large supersymmetry breaking scale. In these circumstances, the effects
of quantum gravity can no longer be neglected. In particular, in the presence of
supersymmetry breaking, scalar particles acquire masses of order M2

s /m P (where
m P � 1.2× 1019 GeV is the Planck mass) which are of order 102 GeV.

Once gravitational effects are important, we should allow not only that the
superpotential may contain non-renormalizable terms but also that there may be
non-renormalizable kinetic terms. Thus, for example, the scalar field kinetic terms
take the form

∂2K

∂φi∂φ∗j
∂µφi∂

µφ∗j (2.143)

where K (φi , φ
∗
i ) is referred to as the Kähler potential. It turns out [13] that the

complete supergravity Lagrangian can be expressed in terms of

G = K + ln |W |2 (2.144)

apart from couplings to gauge fields, which involve the gauge kinetic function. It
will often be convenient to work in units where the reduced Planck mass MP = 1,
where MP is defined by

M−2
P ≡ 8πGN (2.145)

where GN is Newton’s constant, so that

MP � 2.44× 1018 GeV. (2.146)

In these units, the zero-temperature effective potential takes the form

V = eG(Gi (G−1)i
j G j − 3) (2.147)

where the scalar fields have been written as φi , their adjoints as φi∗ and derivatives
of G as

Gi ≡ ∂G

∂φi
Gi ≡ ∂G

∂φi∗ (2.148)

and

Gi
j ≡

∂2G

∂φi∂φ∗j
. (2.149)

The inverse (G−1)i
j obeys

(G−1)i
j G j

k = δi
k . (2.150)

In particular, in the case of a single gauge-singlet chiral superfield � with minimal
kinetic terms arising from

G = φ∗φ + ln |W |2 (2.151)
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we have

V = eφ∗φ
(∣∣∣∣∂W

∂φ
+ φ∗W

∣∣∣∣2 − 3|W |2
)

(2.152)

instead of V = |∂W/∂φ|2 for the globally supersymmetric case, as in (2.120).
Consideration of the supersymmetry transformation laws of scalar fields and
their fermionic superpartners shows that the criterion for supersymmetry breaking
is that ∂W/∂φ + φ∗W should be non-zero [14]. Thus, whereas the globally
supersymmetric theory vacua with unbroken supersymmetry had V = 0, in the
locally supersymmetric case (with minimal kinetic terms) supersymmetric vacua
have

V = −3eφ∗φ |W |2 (2.153)

More generally, we may consider gauge non-singlet chiral superfields �i .
In that case, the supergravity Lagrangian [13] also involves the gauge kinetic
function fab. For the minimal choice of gauge kinetic function

fab = δab (2.154)

the gauge kinetic term
− 1

4 Re fab Faµν Fµν
b (2.155)

simplifies to − 1
4 Faµν Fµν

a . Then, with minimal kinetic terms, the zero-
temperature effective potential takes the form

V = eφ∗j φ j

(∣∣∣∣∂W

∂φi
+ φi∗W

∣∣∣∣2 − 3|W |2
)
+ 1

2
g2Gi (Ta)i j φ j Gk(Ta)klφl (2.156)

where we have assumed a simple gauge group with gauge coupling constant g,
and

Gi = φi∗ + 1

W

∂W

∂φi
. (2.157)

If supergravity is unbroken, study of the supersymmetry transformation laws
shows that we must have

Gi (Ta)i j φ j = 0 and
∂W

∂φi
+ φi∗W = 0 (2.158)

and supersymmetric vacua have

V = −3eφ∗j φ j |W |2. (2.159)

There is no longer any requirement that supersymmetric minima should be
degenerate in energy at T = 0 nor that they should have lower energy than all
other vacua.

In the high-temperature limit, (2.32) still applies to the one-loop
temperature-dependent correction to the effective potential provided that, in
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the case that the kinetic terms are non-minimal, we first construct fields with
canonical kinetic terms by field redefinition. This means that, for scalar fields φi

(and their fermionic superpartners), we have to write

φi = (G−1/2)
j
i (φ j )N (2.160)

and for the gauginos
λa = (Re fab)

−1/2(λb)N (2.161)

where (φ j )N and (λb)N are the normalized fields. The relevant mass matrices
are obtained from the standard supergravity Lagrangian. The outcome [15–18] is
particularly simple in the case of minimal kinetic terms. Then

V
T
1 = − π2T 4

90

(
NB + 7

8
NF

)
+ T 2

12
eG

[
3

2
(A + B)+ (C + N)(C − 2)+ 1

2
C2 + C − 1

]
(2.162)

where

A = Gi Gij G j + Gi Gij G j (2.163)

B = Gij Gi j (2.164)

C = Gi Gi (2.165)

and N is the number of chiral superfields. In practice, N is often large. For
example, if the matter field content is that of the minimal SU(5) GUT, there are
nG = 3 generations in the 5̄+ 10 representation contributing 45 to N , two copies
of 5 or 5̄ for electroweak Higgs contributing 10 to N and one copy of 24 for
the grand unified Higgs scalars contributing 24 to N , leading to a total value of
N = 79.

Provided that all of the couplings in the superpotential are of the same order
of magnitude, in units where the reduced Planck mass is 1, we can then take the
large-N limit to obtain

V
T
1 = −

π2T 4

90

(
NB + 7

8
NF

)
+ N

T 2

12
eG(Gi G

i − 2). (2.166)

Provided that the changes in V
T
1 generated by non-minimal kinetic terms do not

introduce extra factors of N (which is true for most choices of G), this is still the

large-N limit of V
T
1 in that case. For any particular choice of Kähler potential and

superpotential and, therefore, of G, the discussion of phase transitions proceeds as
before with the modified finite-temperature corrections to the effective potential
of (2.162).
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2.9 Nucleation of true vacuum

In sections 2.4 and 2.6, we have found that first-order phase transitions may occur
as the universe cools. If the phase transition is first order, it will be necessary for
the universe to tunnel out of the metastable minimum [19–21] (false vacuum) to
reach the absolute minimum (true vacuum). If the tunnelling rate is small, this
may occur at temperatures very much lower than the temperature Tc1 of (2.76)
at which the energy of the zero- (and low-) temperature vacuum drops below
that of the high-temperature vacuum. In what follows, we shall approximate the
tunnelling rate by its T = 0 value and study, for simplicity, the case of a single
scalar field φ.

In the semi-classical limit (small �) the probability per unit time per unit
volume for formation of a bubble of true vacuum � is given by [19]

� = Ae−B/� (2.167)

where
B = SE (2.168)

with SE the Euclidean action for a solution of the Euclidean Euler–Lagrange
equations which satisfies the boundary conditions that φ approaches the false
vacuum (metastable minimum) as the Euclidean time tE → ±∞, and with zero
Euclidean time derivative at tE = 0, where

tE ≡ it . (2.169)

This is referred to as the ‘bounce’ solution (because it turns around and bounces
back to the false vacuum.) The tunnelling is dominated by the solution for φ that
gives the smallest value of SE . The derivation of this result is by studying the
imaginary part of the effective potential in the false vacuum. The coefficient A
is, in general, more difficult to calculate [20]. However, since it does not appear
in an exponent, an estimate on dimensional grounds is sufficient. At T = 0, we
may expect A to be of order M4 where M is an appropriate mass scale, such as
the height of the potential barrier to be tunnelled through or (see [21]) the value
of (d2V/dφ2)1/2 at the metastable minimum, which will usually be of the same
order of magnitude.

For a single real scalar field, the Euclidean action takes the form

SE =
∫

d4x ( 1
2∂µφ∂µφ + V (φ)) (2.170)

with the metric the positive-definite metric of four-dimensional Euclidean space,
and the Euclidean Euler–Lagrange equation is

∂µ∂µφ = ∂2φ

∂ t2
E

+∇2φ = V ′(φ). (2.171)
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It can be shown that the bounce which minimizes SE is O(4) symmetric, i.e. φ is
a function of the four-dimensional radial variable ρ alone, where

ρ2 = t2
E + x2. (2.172)

Then

SE = 2π2
∫ ∞

0
dρ ρ3

[
1

2

(
dφ

dρ

)2

+ V (φ)

]
(2.173)

and the equation of motion is (exercise 4)

d2φ

dρ2 +
3

ρ

dφ

dρ
= V ′(φ). (2.174)

In terms of this variable, the boundary conditions for a bounce solution are
φ → φ+ as ρ → ∞, and dφ dρ = 0 when ρ = 0, where φ+ is the value of
φ at the metastable minimum.

An explicit bounce solution is most easily obtained in the so-called ‘thin-
wall’ approximation [19] which treats the energy difference ε between the two
vacua as small compared with the height of the potential barrier between them.
Then, we write

V (φ) = V0(φ)+ O(ε) (2.175)

where V0(φ) is the effective potential in the limit that we neglect the energy
difference between the two vacua, and

ε = V (φ+)− V (φ−) (2.176)

where φ+ and φ− are, respectively, the values of φ at the metastable and absolute
minima. The Euclidean equation of motion is approximated first by replacing
V ′(φ) by V ′0(φ) in (2.174). We shall see later that, in this approximation, it is also

correct to neglect 1
ρ

dφ
dρ

, in which case the equation of motion to be solved for the
bounce solution becomes

d2φ

dρ2
= V ′0(φ). (2.177)

It is not difficult to show that the solution is

ρ =
∫

dφ√
2V0(φ)

. (2.178)

A simple example is obtained by taking

V0(φ) = λ

8

(
φ2 − µ2

λ

)2

(2.179)
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which has degenerate minima at φ = ±µ/
√

λ with V0 = 0. Then (2.178) leads
(exercise 5) to

φ − φ0 = µ√
λ

tanh
[µ

2
(ρ − ρ0)

]
(2.180)

where φ0 is the value of φ at some reference value ρ0 of ρ. Choosing ρ0 to be
the value at which φ takes the average of its values in the true and false vacua,
namely φ0 = 0, then

φ = µ√
λ

tanh
[µ

2
(ρ − ρ0)

]
. (2.181)

Assuming that ρ0 � µ−1, the length scale on which φ varies, then

φ →− µ√
λ

as ρ → 0 (2.182)

and, in any case,

φ → µ√
λ

as ρ →∞. (2.183)

It will be seen later that this is correct for the bounce solution that minimizes
SE . If (after lifting the degeneracy of the two vacua using the O(ε) term in V )
φ = φ− = −µ/

√
λ is the true vacuum and φ = φ+ = µ/

√
λ is the false vacuum,

then the bounce solution describes a bubble of true vacuum embedded in the false
vacuum with wall thickness of order µ−1, where the rapid variation of φ occurs,
separating the two regions. Under the assumption that ρ0 � µ−1, the radius of
the bubble is large compared with the thickness of the wall, which explains the
‘thin-wall’ approximation terminology.

The next steps are to calculate B and to justify the various assumptions made.
In the thin-wall approximation,

φ(ρ) = − µ√
λ

for ρ � ρ0 (2.184)

= µ√
λ

tanh
[µ

2
(ρ − ρ0)

]
for ρ � ρ0 (2.185)

= µ√
λ

for ρ � ρ0. (2.186)

The contribution to SE from outside the wall (ρ � ρ0) is zero because here
1
2 (dφ/dρ)2 + V (φ) � 0. The contribution from inside the wall (ρ � ρ0) is
obtained by first noting that here

1

2

(
dφ

dρ

)2

+ V (φ) � −ε. (2.187)

As a consequence, the contribution to SE from inside the wall is

SE � −π2

2
ερ4

0 . (2.188)
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The remaining contribution to SE comes from the region within the wall. Noting
that (2.178) implies that

dφ

dρ
= √

2V0 (2.189)

this contribution to SE may be written as

SE � 2π2ρ3
0

∫
dρ 2V0(φ) = 2π2ρ3

0

∫ φ+

φ−
dφ

√
2V0(φ). (2.190)

Thus, the total value of SE in the thin-wall approximation is

SE = −π2

2
ερ4

0 + 2π2ρ3
0 I (2.191)

where

I ≡
∫ φ+

φ−
dφ

√
2V0(φ). (2.192)

Minimizing SE with respect to ρ0, to find the bounce solution that dominates the
tunnelling, gives

ρ0 � 3I

ε
. (2.193)

Thus, when ε is small, ρ0 is large compared with µ−1, which justifies an earlier
assumption. It also follows that the small energy difference between the two
phases does indeed correspond to a bubble of true vacuum with a thin wall.
Moreover, the neglect of 1

ρ
dφ
dρ

is also justified because outside or inside the

bubble dφ
dρ

is negligible because φ is slowly varying, and within the bubble wall
1
ρ

dφ
dρ
� 1

ρ0

dφ
dρ

is negligible because ρ0 is large. With ρ0 given by (2.193), the
minimum value of SE deriving from (2.191) is

SE = 27π2 I 4

2ε3
(2.194)

which provides the value of B for the bounce solution that dominates the
tunnelling rate (2.167). With φ± = ±µ/

√
λ, and V0 given by (2.179), it is

straightforward to evaluate I to obtain

I = 2µ3

3λ
. (2.195)

Then the tunnelling rate is given by (2.167) with

B = 8π2µ12

ε3λ4 . (2.196)

Once the bubble of the true vacuum has materialized, it can be shown [22] that
(in the thin-wall approximation) it materialises with radius ρ = ρ0 and that the
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development in time of the bubble can be obtained by continuing in time from
Euclidean time to real time. Thus, whereas in Euclidean time the surface of the
bubble was at

ρ =
√

t2
E + x2 = ρ0 (2.197)

in real time the surface of the bubble is at√
x2 − c2t2 = ρ0 (2.198)

(restoring the explicit speed of light c which we have been setting to 1). The
quantity ρ0 is, in general, on a sub-microscopic scale and so negligible. Thus, to
a good approximation, the surface of the bubble is at x2 = c2t2. Consequently,
the radius of the bubble grows with the speed of light.

2.10 Exercises

1. Recast the effective potential of (2.62) in the form (2.77).
2. Show that the zero-temperature effective potential deriving from (2.94)

always has a minimum at φc = 0 when B > 0 and α > 0. Also, show
that when B < 0 there can only be a minimum at the origin when α < 0.

3. Check that the SU(5) symmetric, SU(4) × U(1) symmetric and SU(3) ×
SU(2) × U(1) symmetric minima of (2.123), (2.124) and (2.125) all have
V = 0.

4. Derive the Euclidean action (2.173) and the equation of motion (2.174) when
φ is a function of the four-dimensional radial variable ρ alone.

5. Check that the bounce solution satisfies (2.178) and that, for V0 given by
(2.179), this leads to the explicit solution (2.180).

2.11 General references

The books and review articles that we have found most useful in preparing this
chapter are:

• Kolb E W and Turner M S 1990 The Early Universe (Reading, MA:
Addison-Wesley)

• Olive K A 1990 Phys. Rep. 190 307
• Linde A D 1979 Rep. Prog. Phys. 42 389
• Bailin D and Love A 1993 Introduction to Gauge Field Theory (Bristol: IOP)
• Bailin D and Love A 1994 Supersymmetric Gauge Field Theory and String

Theory (Bristol: IOP)
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Chapter 3

Topological defects

3.1 Introduction

When a phase transition occurs in the early universe, the alignment of the
spontaneous symmetry breaking expectation value may be different in adjacent
causal domains. In that case, topologically stable objects such as domain walls,
cosmic strings and magnetic monopoles, referred to as ‘topological defects’,
can be formed [1]. Similar topological defects are familiar in condensed state
physics. For example, a ferromagnet is, in general, divided into domains
where the spontaneous magnetization is aligned in a definite direction. At the
boundary between two such domains, the direction of the magnetization evolves
continuously between its direction in one domain and its direction in the adjacent
domain to form a so-called ‘domain wall’. Another example of a topological
defect is provided by a magnetic flux line in a type II superconductor. In this case,
the phase of a complex scalar field (associated with the Cooper-paired electron
condensate) changes by 2πn, where n is an integer, in going around a closed
loop surrounding the flux line and the flux line carries n units of a quantum
of magnetic flux. In addition to these two-dimensional and one-dimensional
topological defects, there are also point defects. These are most familiar in
a particle physics context as magnetic monopole solutions though analogous
objects occur in superfluid 3He. In the context of particle physics and early
cosmology, the corresponding topological defects are associated with the vacuum
expectation values (VEVs) in electroweak or grand unified theories or with the
various moduli that occur in superstring theories.

Once such topological defects have been formed at a phase transition in
the early universe, they can manifest themselves in various ways. The simplest
manifestations are as a potentially substantial contribution to the energy density
of the universe or, in the case of magnetic monopoles, as a relic density of
particles carrying magnetic charge. More subtle manifestations are also possible.
For example, relic cosmic strings may act as gravitational lenses or produce
temperature fluctuations in the cosmic microwave background radiation.
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V(φ)

φ
η−η

Figure 3.1. Effective potential for φ4 theory.

In the following sections, we shall develop the theory of domain walls,
cosmic strings and magnetic monopoles in turn.

3.2 Domain walls

When the effective potential in a field theory has two degenerate minima with
V = 0, two-dimensional solutions of the field equations with finite energy per
unit area can occur. The simplest examples of such domain-wall solutions [2] are
obtained from the Lagrangian density

� = 1
2∂µφ∂µφ − V (φ) (3.1)

with

V (φ) = λ

4
(φ2 − η2)2 (3.2)

where φ is a real scalar field and λ and η are real constants. The potential V has
minima with V = 0 at φ = ±η and a maximum at φ = 0 (see figure 3.1). The
idea is to construct a static solution for which φ evolves from one minimum for
z →−∞ to the other minimum for z →+∞. In that case, the domain wall is in
the x–y plane. Clearly, we can construct such solutions with the domain wall in
any chosen plane.

In general, for a static solution where φ depends only on z, the field equation
is

d2φ

dz2
= V ′(φ). (3.3)
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As for the (approximate) bounce in (2.177), the solution satisfies

1

2

(
dφ

dz

)2

= V + c (3.4)

where c is a constant. The energy (per unit area) of the domain wall is given by

E =
∫ ∞

−∞

[
1

2

(
dφ

dz

)2

+ V (φ)

]
dz (3.5)

and so to obtain a solution with finite energy density, it is necessary to require that
dφ/dz → 0 as z → ±∞. (V (φ) will already approach zero as z → ±∞ if we
succeed in constructing a solution of the type we are looking for.) Thus, we must
take c = 0. Then integrating (3.4) gives

z = ±
∫

dφ√
2V 

(3.6)

(analogously to (2.177)). For the choice (3.2), this gives

z − z0 = ∓
√

2

η
√

λ
arctanh

(
φ

η

)
(3.7)

where z0 is an integration constant. Different choices of this constant amount to
moving the centre of the domain wall along the z-axis. Inverting (3.7) gives

φ = φ∓ ≡ ∓η tanh

[
η
√

λ√
2

(z − z0)

]
. (3.8)

As z →∞, φ∓ → ∓η and, as z → −∞, φ∓ → ±η. The two solutions φ = φ+
and φ = φ− are referred to, respectively, as the ‘kink’ and the ‘antikink’. The
kink evolves from the minimum at φ = −η for z → −∞ to the minimum at
φ = +η for z → +∞ (see figure 3.2) and the antikink evolves conversely (see
figure 3.3). Both domain walls have their centre at z = z0 in the sense that φ = 0
when z = z0. The ‘thickness’ of each domain wall is of order

√
(2/λ)η−1. This

is a balance between the desire of the potential energy to make the wall as thin
as possible and the desire of the gradient energy to make the wall as thick as
possible. The total energy per unit cross-sectional area of a kink or antikink is
finite because in (3.5) V (φ) and dφ/dz go to zero sufficiently fast as z → ±∞.
Substituting the explicit solutions (3.8) into (3.5) gives the finite energy per unit
area of a kink or antikink (exercise 1):

E = 2
3

√
(2)λη3. (3.9)

The stability of a domain wall is associated with a topological principle. The
Lagrangian (3.1) possesses a discrete Z2 symmetry

Z2 : φ →−φ (3.10)
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η

−η

φ

0 zz

Figure 3.2. Kink soliton solution.

0

η

−η

φ

zz

Figure 3.3. Antikink soliton solution.

which is broken by the vacuum expectation value of φ. The domain walls connect
the two distinct minima which constitute the complete space of minima. There is
no way to continuously deform a domain wall to a new object that does not have
its ends at distinct minima, while keeping the energy density finite.

The formation of such topological defects can be understood in terms of
the Kibble mechanism [1], which we now describe. As discussed in chapter 2,
symmetries are expected to be restored at high temperatures. As the universe
cools, it passes through a phase transition and different regions of the universe
undergo phase transitions to different minima of the zero-temperature effective
potential. There will be some correlation length ξ such that the VEVs for points
of space separated by more than about ξ are uncorrelated. The length ξ cannot
be larger than the particle horizon since no influence can have propagated over a
distance greater than this from the big bang to the time of the phase transition.
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In the present case, at high temperatures we expect 〈φ〉 to be zero and,
after the phase transition, some regions will have 〈φ〉 = η and some will have
〈φ〉 = −η. In this way topological defects can form. Although a domain wall can
change its shape, topology prevents it from disappearing once formed because its
ends are at discrete minima of V . In general, there will be curved domain walls as
well as flat domain walls, with the curved walls enclosing a region of space inside
which the VEV of φ differs from the VEV of φ outside.

Many domain walls will form constituting a random network whose
evolution with time may be studied. The result for non-relativistic domain walls
is that the energy density (i.e. the energy per unit volume) of the domain walls
scales as R−1, where R(t) is the scale factor of the universe. This should be
compared with the energy density due to radiation which scales as R−4 and
that due to matter which scales as R−3 (as in section 1.3). Consequently, as R
increases with time, the energy density of the universe comes to be dominated
by domain walls. The total energy associated with a plane domain wall with area
H−2

0 , where H0 is the present day Hubble constant, is far larger than the estimated
total energy due to matter within the Hubble radius. For example, for λ not too
much different from 1 and η ∼ 100 GeV, the former is larger by 12 orders of
magnitude. A larger expectation value for the scalar field makes things worse
(exercise 2). Thus, domain walls appear undesirable. This suggests that a theory
is needed which does not have disconnected vacuum states, such as 〈φ〉 = ±η in
the present model, to avoid the existence of domain walls. Alternatively, a period
of inflation (see chapter 7) is needed to dilute the domain wall density.

3.3 Global cosmic strings

One-dimensional topological defects (cosmic strings) can also be produced by
phase transitions in the early universe. The simplest example of a cosmic string
[3] may be derived from the Lagrangian density for a complex scalar field φ:

� = ∂µφ∗∂µφ − V (φ) (3.11)

with

V (φ) = λ

2
(φ∗φ − η2)2 (3.12)

and λ and η are real constants. This Lagrangian possesses a global U(1)

symmetry under
φ → eiαφ (3.13)

where α is an arbitrary constant real number. The potential V of (3.12) has a
maximum at φ = 0 and minima with V = 0 when

φ = ηeiβ (3.14)

where β is an arbitrary real number. The vacuum VEV (3.14) breaks the global
U(1) symmetry because it is not invariant under the transformation (3.13).
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It is possible to construct other extended static solutions as follows. Take
cylindrical polar coordinates (ρ, θ, z). The solutions in question have the form

φ = ηeinθ f (ρ) (3.15)

for some integer n and the function f (ρ) is to be determined from the field
equations. In cylindrical polar coordinates, these are (exercise 3)

d2 f

dξ2
+ 1

ξ

d f

dξ
− n2

ξ2
f = f ( f 2 − 1) (3.16)

where
ξ ≡ λ1/2ηρ. (3.17)

The phase of φ will become undefined at ρ = 0 unless |φ| → 0 as ρ → 0. Thus,
the boundary condition

f (ρ) → 0 as ρ → 0 (3.18)

is required to ensure a single-valued field φ. Also, there is the boundary condition

f (ρ)→ 1 as ρ →∞ (3.19)

so that φ approaches one of its continuum of minima (3.14) in order to minimize
the energy. Equation (3.16) may be solved numerically with these boundary
conditions. The scale of the distance is set by λ1/2η so the vortex line or cosmic
string has a core of radius of order λ−1/2η−1 outside of which φ approaches its
minima as ρ →∞ and inside of which φ → 0 as ρ → 0.

The energy E of the vortex line or cosmic string is given by

E =
∫

d3x [∇φ∗ · ∇φ + V (φ)]. (3.20)

Taking cylindrical polar coordinates, the energy per unit length (along the z-
direction) of a cosmic string of length l is

E

l
=
∫ ∞

0
ρdρ

∫ 2π

0
dθ

(
∂φ∗

∂ρ

∂φ

∂ρ
+ 1

ρ2

∂φ∗

∂θ

∂φ

∂θ

)
(3.21)

because (3.14) is independent of z. The last term in (3.21) gives a contribution
to E/ l proportional to

∫∞
0 f 2ρ−1 dρ and, because f → 1 as ρ → ∞, this

contribution is logarithmically divergent. Considering the energy inside a cylinder
of radius R and recalling that λ−1/2η−1 sets the length scale, we must get

E

l
∼ ln(λ1/2ηR). (3.22)

This global cosmic string resembles the vortex line in superfluid 4He where φ is
the condensate wavefunction.
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Like a domain wall, a (global) cosmic string is stabilized by topological
considerations. A cosmic string with asymptotic behaviour einθ as ρ → ∞ is
said to have winding number n. The space of vacuum states (minima of V ) is
characterized by eiβ (as in (3.14)) and so is just a circle S1. If (for fixed z) we
draw a circular path of large radius in real space encircling the core of the cosmic
string (where φ = 0), then, as we go once around this path in real space, the field
φ goes n times around the circle S1 which is the space of vacuum states. Provided
that the cosmic string is either of infinite length or forms a closed loop, this is a
property of a cosmic string that cannot be changed by continuous deformations. It
is a topological quantum number which, at least at the classical level, guarantees
the continued existence of a vortex line once formed, unless it encounters other
vortex lines or divides into more vortex lines in such a way that n is conserved
(e.g. into n vortex lines with unit winding number.)

If we denote the space of true vacua (minima of V ) by �, then the
topological entity involved is the homotopy group π1(�). In the present case,
the relevant homotopy group is π1(S1) which is known to be Z , i.e. isomorphic
to the integers. The winding number n ∈ Z expresses this fact.

3.4 Local cosmic strings

If a complex scalar field is coupled to a gauge field, e.g. the electromagnetic field,
then the Lagrangian possesses a local symmetry, rather than a global symmetry
as in section 3.3, and a so-called ‘local cosmic string’ [4] or gauge string can
occur as a solution of the field equations. The simplest example is provided by
the Higgs model, which is the theory of a complex scalar field coupled to a U(1)

gauge field which we may take to be the electromagnetic field. The Lagrangian is
that of section 3.3 amended to incorporate the gauge coupling. Thus,

� = (Dµφ)∗(Dµφ)− 1
4 Fµν Fµν − V (φ) (3.23)

with V (φ) given by (3.12) and

Dµφ ≡ (∂µ + ieAµ)φ (3.24)

Fµν = ∂µ Aν − ∂ν Aµ (3.25)

where Aµ is the electromagnetic four-potential and e is the charge of the scalar
field. This is the same model as that studied in section 2.4, after adding a constant
to V and with a different definition of λ.

As in the discussion of global cosmic strings, V has a minimum at φ = ηeiβ .
However, the Lagrangian now possesses a local U(1) symmetry under

φ → ei�(x)φ (3.26)

Aµ → Aµ − 1

e
∂µ�(x) (3.27)
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which is broken by the VEV of φ. Using cylindrical polar coordinates, we look
for solutions for φ of the form (3.15), as before, but we must now also determine
Aµ. For large ρ, with the boundary condition (3.19) so that φ approaches one of
its minima,

φ ∼ ηeinθ as ρ →∞. (3.28)

If we also arrange that Aµ has the boundary condition

Aµ ∼ −ie−1∂µ ln(φ/η) as ρ →∞ (3.29)

then Dµφ and Fµν both approach zero for large values of ρ and the energy density
vanishes for large ρ. Indeed, when the complete solution with these boundary
conditions is constructed numerically, in a way that we shall discuss shortly, the
energy density approaches zero fast enough as ρ →∞ that this cosmic string has
finite energy density per unit length.

The local cosmic string or gauge string carries magnetic flux. The amount
of flux may be determined by integrating over the area of a circle of large radius
R in the (ρ, θ) plane with the asymptotic form (3.29). Then (exercise 5)∮

B · dS =
∮

A · dl = 2πne−1. (3.30)

Thus, the local cosmic string characterized by winding number n carries n units
of magnetic flux 2πe−1. Local cosmic strings are, therefore, quantized tubes of
magnetic flux analogous to flux lines in a superconductor.

To construct the required (static) solution for φ and Aµ, we take

φ = ηeinθ f (ρ) (3.31)

as for the global cosmic string. Then, since

∇φ = ∂φ

∂ρ
ρ̂ + 1

ρ

∂φ

∂θ
θ̂ + ∂φ

∂z
k̂ (3.32)

the boundary condition (3.29) suggests that we should take Aµ to have non-zero
components only in the ρ̂ and θ̂ directions. Working in a gauge in which the
component Aρ = 0, we take

A = n

eρ
a(ρ)θ̂ . (3.33)

The functions a(ρ) and f (ρ) are then determined numerically by solving the field
equations

Dµ Dµφ + λ(φ∗φ − η2)φ = 0 (3.34)

∂ν Fµν + ie(φ∗Dµφ − φ(Dµφ)∗) = 0 (3.35)

subject to the boundary conditions (3.28) and (3.29).
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There are now two length scales in the problem instead of one as in the case
of the global string. There is the mass mφ of the scalar field after spontaneous
spontaneous symmetry breaking which is obtained by substituting 〈φ〉 in V (φ).
This gives

m2
φ = η2λ. (3.36)

It is mφ that controls the rate of variation of φ for large ρ and, therefore, the
variation of f (ρ). There is also the mass m A of the gauge field after spontaneous
symmetry breaking which is obtained by substituting 〈φ〉 in the (Dµφ)∗(Dµφ)

term. This gives
m2

A = e2η2. (3.37)

It is m A that controls the rate of variation of A for large ρ and, therefore, the
variation of a(ρ). The approximate solution is found to be of the form

f ∼ 1− f1ξ
−1/2 exp

(
−mφξ

m A

)
as ξ →∞ (3.38)

a ∼ 1− a1ξ
1/2 exp(−ξ) as ξ →∞ (3.39)

where f1 and a1 are constants and

ξ ≡ m Aρ. (3.40)

It can be seen from (3.38) and (3.39) that φ is localized on a scale m−1
φ and A

is localized on a scale m−1
A . As a consequence, the energy density is localized

without introducing a cut-off.
The energy per unit length of a local cosmic string may be estimated as

follows. The cosmic string has an inner core where φ is approximately zero (i.e.
a core of false vacuum) with radius

Rφ � m−1
φ = λ−1/2η−1 (3.41)

and a tube of magnetic flux of radius

RA � m−1
A = e−1η−1. (3.42)

The energy density obtained by putting φ = 0 in V (φ) is 1
2λη4. Thus, there is an

energy density per unit length from the inner core of the cosmic string of order
1
2λη4π R2

φ ∼ η2. There is also an energy per unit length from the tube of magnetic

flux of order B2 R2
A where B is the magnitude of the magnetic field strength. From

(3.30), with one unit of flux, we estimate

B ∼ R−2
A e−1. (3.43)

Thus, using (3.42), we find that B2 R2
A ∼ η2 and both the magnetic and inner-core

contributions to the energy per unit length µ are of the same order. The total has
order of magnitude

µ ∼ η2. (3.44)
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3.5 Gravitational fields of local cosmic strings

To calculate the gravitational field due to a cosmic string, the energy–momentum
tensor produced by the string is required. (See section 5 of the review by Vilenkin
in the general references at the end of this chapter.) For cosmological purposes,
we are interested in cosmic strings of length much greater than the radius of the
inner core or the flux tube. We therefore average the energy–momentum tensor
over the core of the cosmic string and treat the string as having zero radius. Thus,
for a long straight line with axis along the z-direction, we replace the energy-
momentum tensor Tµν by T̃µν where

T̃µν = δ(x)δ(y)

∫
core

Tµν dx dy. (3.45)

Invariance under Lorentz boosts along the z-direction shows that T̃00 = T̃33 and
there are no off-diagonal components. The conservation law for the energy-
momentum tensor

Dν Tµν = 0 (3.46)

must also be imposed; Dν is the gravitational covariant derivative. Then, by
considering

∫
D j Ti j xk dx dy and integrating by parts, we conclude that

T̃ik = 0 for i, k = 1, 2. (3.47)

Also, since the total energy per unit length is µ, we can now write

T̃µν = µ diag(1, 0, 0, 1)δ(x)δ(y) (3.48)

so that
∫

T00 dx dy = µ.
With the energy-momentum tensor (3.48) for the local cosmic string,

Einstein’s field equations can be solved in the limit GN µ � 1 for the metric
in the region outside an infinitely long straight string [6]. In cylindrical polar
coordinates (ρ, θ, z), the result for the proper-time element dτ is

dτ 2 = dt2 − dz2 − dρ2 − (1− 4GN µ)2ρ2 dθ2. (3.49)

This can be recast as the metric of flat Minkowski space by the transformation

θ̂ = (1− 4GN µ)θ. (3.50)

However, for 0 ≤ θ < 2π , we have

0 ≤ θ̂ < 2π(1− 4GN µ) (3.51)

which limits the range of θ̂ . This is called a ‘conical singularity’. Space with a
conical singularity is the same as flat space 0 ≤ θ̂ < 2π with the angular region
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��

Figure 3.4. Conical singularity on the space outside a local cosmic string. � is the axis of
the string.

between 2π(1−4GN µ) and 2π removed. In addition, because θ = 0 and θ = 2π

are to be identified, we must identify θ̂ = 0 and θ̂ = 2π −�θ where

�θ ≡ 8πGN µ. (3.52)

Then, looking along the z-axis, space looks as in figure 3.4 with the hatched area
removed and points at the same value of ρ on the dotted lines identified. The
conical singularity in the space outside a long straight local cosmic string has
several striking consequences:

3.5.1 Double images [5]

A galaxy located behind a local cosmic string, from the perspective of the
observer, will acquire a double image. Consider, for simplicity, an infinitely
long straight cosmic string normal to the plane of the page in figure 3.5 with
the observer ω and the galaxy g being observed in the plane of the page. Because
points A and B are identified, as discussed earlier, two images of the galaxy are
seen, emanating from A and B, The angle between the two images �α is given
by

d1�α = d2�θ (3.53)

where d1 and d2 are, respectively, the distances from the observer to the galaxy
and from the cosmic string to the galaxy. As a consequence of (3.52),

�α = d2

d1
8πGN µ. (3.54)
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Figure 3.5. Double image of a galaxy behind a cosmic string. � is the axis of the string,
ω is the observer and g is the galaxy.

3.5.2 Temperature discontinuities [6]

Consider a local cosmic string moving perpendicularly to the line of sight of an
observer observing the cosmic microwave background radiation coming from far
off (d1 � d2 in the previous discussion). There are two images P1 and P2 of
the same point separated (see figure 3.6) by an angle �α � 8πGN µ. If the
relative velocity of the cosmic string and observer is v, then P1 and P2 have a
component of velocity of order �α antiparallel or parallel to v respectively. As a
consequence, there is a Doppler shift in the temperature of the radiation between
the two points. This results in a discontinuity δT/T from one side of the cosmic
string to the other of order 8πGN µ|v|.

3.5.3 Cosmic string wakes [7]

A long straight cosmic string moving with velocity v across the universe will
deflect particles of matter. A wedge of matter with opening angle 8πGN µ and
radius vt forms as a wake in time t . This may be relevant to structure formation.

3.6 Dynamics of local cosmic strings

Once a network of cosmic strings has formed, following a phase transition in the
early universe, its evolution depends on the emission of gravitational radiation by
string loops. In principle, the classical field equations (3.34) and (3.35) provide
the equations of motion for a local cosmic string. In practice, when we are
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Figure 3.6. Temperature discontinuity due to a cosmic string. � is the axis of the string,
ω is the observer and P1 and P2 are two images of the same point.

τ
Figure 3.7. World sheet for a cosmic string.

neglecting the radius of the string core, it is much simpler to use the equations of
motion for a relativistic string of zero radius which derive from the Nambu–Goto
action and are identical to the equations of motion for the fundamental bosonic
string.

We denote by Xµ the position in spacetime of points on the axis of the
cosmic string (where the Higgs field φ is zero.) Whereas a point particle may be
described by degrees of freedom Xµ(τ) depending only on a timelike coordinate
τ , to describe a string we need, in addition, a spacelike coordinate σ which we
may take, for convenience, to be in the range 0 ≤ σ ≤ π . Then, the string degrees
of freedom Xµ(τ, σ ) trace out a curve (see figure 3.7) as σ varies at fixed τ . The
action S for a relativistic string propagating in Minkowski spacetime is of the
form

S = −T

2

∫ τ f

τi

dτ

∫ π

0
dσ (− det h)1/2hαβηµν∂α Xµ∂β Xν (3.55)

where T is the string tension,

ηµν = diag(1,−1, . . . ,−1) (3.56)
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and hαβ(τ, σ ) is a world-sheet metric of signature (+,−) where α = 0 and
1 refer to τ and σ respectively. This action displays two-dimensional world-
sheet reparametrization invariance and also possesses conformal invariance under
a local rescaling of the world-sheet metric

δhαβ = �(τ, σ )hαβ δXµ = 0. (3.57)

With the aid of world-sheet reparametrization invariance, the world-sheet metric
may be reduced to the form

hαβ(τ, σ ) = eγ (τ,σ )ηαβ (3.58)

where
ηαβ = diag(1,−1). (3.59)

With the aid of conformal invariance, it may be further reduced to

hαβ = ηαβ. (3.60)

The gauges (3.60) are referred to as ‘covariant’ gauges. There is still further gauge
freedom which we shall exploit shortly.

In a covariant gauge, the equations of motion of the string, obtained by
varying with respect to Xµ and hαβ (exercise 6), take the simple form

∂α∂α Xµ =
(

∂2

∂τ 2 −
∂2

∂σ 2

)
Xµ = 0 (3.61)

with the constraints

∂ Xµ

∂τ

∂ Xµ

∂τ
+ ∂ Xµ

∂σ

∂ Xµ

∂σ
= 0 (3.62)

∂ Xµ

∂τ

∂ Xµ

∂σ
= 0. (3.63)

For a closed string loop, there is the boundary condition

Xµ(τ, σ + π) = Xµ(τ, σ ). (3.64)

The remaining gauge degrees of freedom may be used to choose the ‘temporal’
gauge in which τ is identified with X0 ≡ t (Minkowski time.) Then, the equations
of motion and constraints become(

∂2

∂ t2
− ∂2

∂σ 2

)
X = 0 (3.65)

∂ X
∂ t
· ∂ X

∂σ
= 0 (3.66)(

∂ X
∂ t

)2

+
(

∂ X
∂σ

)2

= 1. (3.67)
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Figure 3.8. Intercommuting cosmic strings.

Figure 3.9. Cosmic string loop intercommuting with itself.

These equations have oscillatory solutions and these will allow string loops to
radiate. Because the string loops are relativistic, the quadrupole formula for
gravitational radiation cannot be used. A relativistic calculation shows that the
power P emitted in gravitational radiation by a string loop is given by

P = γ GN µ2 (3.68)

where GN is Newton’s constant and γ is a number of order 100 which depends
on the particular loop [8]. As in section 3.5, µ is the energy per unit length of the
cosmic string.

This gravitational radiation is important for the development in time of the
network of cosmic strings that formed at a phase transition. Also important is
the process of intercommuting [1, 9] as in figure 3.8. In particular, a string loop
may intercommute with itself as in figure 3.9 to produce two smaller loops. When
the evolution of a string network is studied [10], allowing for these two effects,
it is found that strings will not dominate the present day energy density of the
universe. However, apart from individual relic strings producing the observable
effects discussed earlier, the evolution of the string network will leave a relic
gravitational wave background as a result of gravitational radiation emission by
oscillating string loops. Since the gravitational emission is controlled by GN µ2,
this will set a limit on µ if this gravitational background is not to undo the
predictions of the standard model for nucleosynthesis. This is found to require
[11] GN µ � 10−5. There is, however, a tighter bound [12] set by the magnitude
of the cosmic microwave background fluctuation of GN µ � 10−6. It is possible
that particle production rather than gravitational wave emission dominates the
energy loss from oscillating cosmic string loops. In that case [13], there is an
even tighter bound GN µ � 10−9.
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3.7 Magnetic monopoles

It is also possible for point topological defects, magnetic monopoles [14], to form
at phase transitions in the early universe. The simplest model exhibiting this is
an SO(3) gauge field theory with SO(3) spontaneously broken to U(1) by the
expectation value of a scalar field φ in the three-dimensional representation of
SO(3). The Lagrangian density for this model is

� = Dµφ · Dµφ − 1

4
Fa

µν Fµν
a − λ

8
(φ · φ − η2)2 (3.69)

where the gauge field strength is

Fa
µν = ∂µ Aa

ν − ∂ν Aa
µ − gεabc Ab

µ Ac
ν . (3.70)

The covariant derivative of the scalar field is

Dµφa = ∂µφa − gεabc Ab
µφc (3.71)

and a, b, c take the values 1, 2, 3. Minimization of the effective potential

V = λ

8
(φ · φ − η2)2 (3.72)

fixes
|φ| = η. (3.73)

However, because of the SO(3) symmetry, the direction of φ is not fixed.
The magnetic monopole solution [16] is a spherically symmetric solution for

φ of the form
φ = η f (r)r̂ (3.74)

which is a mapping from ordinary space to the SO(3) space, with the asymptotic
behaviour

φ ∼ η r̂ as r →∞ (3.75)

The spatial variation of φ will be determined by the covariant derivative Dµφ

and so gη must enter the r -dependence. On dimensional grounds, we can write,
without loss of generality,

φ = H (ξ)

ξ
η r̂ (3.76)

where
ξ ≡ gηr. (3.77)

The required behaviour as r →∞ is obtained if

H (ξ)

ξ
→ 1 as ξ →∞. (3.78)
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In the absence of gauge fields, the contribution of the scalar kinetic term to the
energy is given by

E = 1
2

∫
∂iφ · ∂iφ d3x (3.79)

where i = 1, 2, 3 is a (summed) spatial index. In spherical polar coordinates
(r, θ, φ),

∇φa = ∂φa

∂r
r̂ + 1

r

∂φa

∂θ
θ̂ + 1

r sin θ

∂φa

∂φ
φ̂. (3.80)

Since r̂ is a function of θ and φ, but not of r , the large r behaviour of the integral
(3.79) for the energy of the monopole is controlled by

E ∼
∫

dr

[(
∂ r̂
∂θ

)2

+ 1

sin2 θ

(
∂ r̂
∂φ

)2
]

. (3.81)

Thus, in the absence of a gauge field contribution to E , the energy of the monopole
solution would be infinite.

To find a finite-energy solution, we need the gauge field contribution to the
covariant derivative to produce a cancellation to ‘improve’ the behaviour of ∇φa

for large r . This possibility may be studied by making the following ansatz for
the gauge field expectation value:

Aa
i =

εailrl

gr2
(K (ξ)− 1). (3.82)

Then (exercise 7)

Diφa = K (ξ)H (ξ)

gr4
(r2δai − rari )+ (ξ H ′(ξ)− H (ξ))

rari

gr4
. (3.83)

A dangerous term of the type H (ξ)r2δai/gr4 has cancelled between the ∂iφa and
−gεabc Ab

i φc contributions to Diφa . For 1
ξ

H (ξ)→ 1 as ξ →∞, this term would

have had the unwelcome asymptotic behaviour r−1 as r → ∞. The surviving
terms are of order r−2 as r → ∞, provided K (ξ)H (ξ) and ξ H ′(ξ) − H (ξ) are
finite for ξ → ∞, and a divergent contribution to the energy of the monopole is
avoided.

With the ansatz (3.82) for the expectation value of the gauge field, the field
strength is given by

gFa
i j =

K 2 − 1

r2
εia j +

(
K ′

r2
− K 2 − 1

r4

)
(εiaprpr j − ε j aprpri ). (3.84)

The energy of the magnetic monopole solution may now be written in terms of H
and K as

E = 4πη

g

∫ ∞

0
dξ ξ−2

[
1

2
(ξ H ′ − H )2 + H 2K 2 + (ξ K ′)2 (3.85)

+ 1

2
(K 2 − 1)2 + λ

8g
(H 2 − η2)2

]
. (3.86)
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Minimizing with respect to variation of H and K gives (exercise 8)

ξ2 K ′′ = K H 2 + K (K 2 − 1) (3.87)

ξ2 H ′′ = 2K 2 H + λ

2g2 H (H 2− ξ2). (3.88)

There is an analytic solution [15] in the limit λ/g2 → 0,

H (ξ) = ξ coth ξ − 1 (3.89)

K (ξ) = ξ cosech ξ. (3.90)

Note that K (ξ)H (ξ) and ξ H ′(ξ)− H (ξ) are finite as ξ →∞, as required earlier
to avoid a divergent contribution to the energy of the monopole solution. In fact,

K (ξ)H (ξ)→ 0 as ξ →∞ (3.91)

in this limit. The corresponding energy, which is (at least at the classical level)
the mass mM of the monopole, is given by

mM = 4πη

g
. (3.92)

More generally, it has the form

mM = 4πη

g
h

(
λ

g2

)
(3.93)

where h turns out to be a slowly varying function.
The monopole solution carries a magnetic charge, which we now evaluate in

the limit λ/g2 → 0. The solution (3.90) implies that

K (ξ)→ 0 as ξ →∞. (3.94)

Thus, as ξ →∞, (3.82) reduces to

Aa
i = −

εailrl

gr2 as ξ →∞. (3.95)

We shall refer to
Ba

i = (∇ × Aa)i = 1
2εi j k Fa

jk (3.96)

as the ‘magnetic’ field, though we are not dealing with electroweak theory here
because the gauge group is SO(3) rather than SU(2) × U(1). With the gauge
field expectation value given by (3.95), the magnetic field is (exercise 9)

Ba
i =

r̂i r̂a

gr2
. (3.97)
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The surviving U(1) gauge group after spontaneous symmetry breaking by the
scalar field expectation value (3.74) is the group of rotations about the direction
r̂ . The magnetic field should, therefore, be identified with the component B of
Ba in this direction:

B = r̂
gr2

(3.98)

Thus, the magnetic field is the field of a magnetic monopole with magnetic charge
4π/g.

3.8 Monopole topological quantum number

The asymptotic form φ = η r̂ of the magnetic monopole cannot be deformed
continuously to the trivial configuration φ = η ẑ and, for this reason, the magnetic
monopole is topologically conserved once formed. This is reflected in the
existence of a topological quantum number defined as follows. The sphere �
of all solutions for the expectation value of φ which minimizes the tree-level
effective potential is given by

|φ| = η. (3.99)

This defines the surface of a sphere and φ(r) can be thought of as a mapping from
the surface � of a sphere in coordinate space to the surface � of the sphere in
the space of solutions. If we parametrize the surface � by parameters u and v,
then the element of surface on the space� is

dS = dSn =
(

∂φ

∂u
× ∂φ

∂v

)
du dv. (3.100)

The unit normal n to the sphere is r̂ and so

φ ·
(

∂φ

∂u
× ∂φ

∂v

)
du dv = η dS. (3.101)

As the parameters u and v are varied to allow r̂ to sweep out the surface � of a
sphere in coordinate space, φ sweeps out the surface � of a sphere in the space
of solutions. For the single monopole solution that we are discussing, as the first
sphere is swept out once so is the second sphere. More generally, for a multi-
monopole solution, it is possible for the second sphere to be swept out N times,
where N is an integer, as the first sphere is swept out once. Thus,∫

�

φ ·
(

∂φ

∂u
× ∂φ

∂v

)
du dv = 4πη3 N. (3.102)

If we continuously deform φ, N cannot change because it is an integer, one in the
case of the single-monopole solution. It is a topological quantum number, which
reflects the fact that a magnetic monopole configuration once formed cannot be
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continuously deformed to the trivial configuration. Thus, magnetic monopole
configurations are stabilized in a topological way.

The topological quantum number N is related to the magnetic charge. This
can be demonstrated as follows. Denote the elements of surface and the unit
normal on the sphere in coordinate space by dS̃ and ñ. Then

dS̃ ñ =
(

∂ r
∂u
× ∂ r

∂v

)
du dv (3.103)

from which it follows that

εi j k dS̃ ñi = ∂(r j , rk)

∂(u, v)
du dv. (3.104)

Noting that
∂φ

∂u
× ∂φ

∂v
= 1

2

(
∂φ

∂r j
× ∂φ

∂rk

)
∂(r j , rk)

∂(u, v)
(3.105)

and using (3.103), the topological quantum number N may be recast in terms of
coordinate-space derivatives of φ as

4πη3 N = 1

2

∫
�

εi j k ñiφ ·
(

∂φ

∂r j
× ∂φ

∂rk

)
dS̃. (3.106)

The integral (3.106) may be formulated as a surface integral of φ ·F j k on a sphere
� of large radius, where the Fa

jk are the spatial components of the gauge field
strength defined in (3.70). For this purpose, we need a solution for F j k in terms
of φ valid for large r . As discussed in section 3.7, for a finite-energy solution
there is a cancellation between the two terms in the covariant derivative

Diφ = ∂iφ − g(Ai × φ) (3.107)

such that the covariant derivative is of order r−2 for r →∞, whereas, separately,
the two terms are of order r−1. Thus, for large r ,

∂iφ � g(Ai × φ) (3.108)

from which it follows that

Ai = 1

gη2 (φ × ∂iφ)+ 1

η2 αiφ (3.109)

where
αi ≡ φ · Ai . (3.110)

The corresponding expression for φ · F j k obtained from (3.70) is

φ · F j k = 1

gη2
φ · (∂ jφ × ∂kφ)+ (∂ jαk − ∂kα j ). (3.111)
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Combining (3.106) with (3.111), the topological quantum number N may be
written in terms of the field strength as

4πη3 N = gη2

2

∫
�

εi j k ñiφ · F j k dS̃. (3.112)

Finally, N may be recast as a surface integral of the magnetic field on a sphere
� of large radius. As discussed in section 3.7, the magnetic field in the model
with SO(3) gauge group should be identified with the component Ba

i in (3.96)
along the direction about which the surviving U(1) gauge symmetry is the group
of rotations. In general, this is the direction |φ|−1φ. Consequently, the magnetic
field B is given by

Bi = 1

2η
εi j kφ · F j k . (3.113)

It follows from (3.112) that

N = g

4π

∫
�

B · ñ dS̃. (3.114)

Thus, the topological quantum number N measures the magnetic charge in units
of 4π/g.

3.9 Magnetic monopoles in grand unified theories

In general, if we start with a grand unified group G and the symmetry is
spontaneously broken to H (at a phase transition), then the action of any element
of H leaves a vacuum state invariant. Consequently, distinct vacuum states
correspond to the coset manifold G/H . The logic behind this is that G invariance
of the effective potential means that starting from any vacuum state, we can
generate further vacuum states (degenerate in energy) by acting with elements
of G. However, when the element of G in question is an element of the subgroup
H , it does not produce a new vacuum state. The topological entity underlying
the existence of stable magnetic monopoles is the second homotopy group for
G/H denoted by π2(G/H ), whose elements are inequivalent mappings from the
surface of a two-sphere S2 to G/H , i.e. mappings which cannot be continuously
deformed into each other. There is a theorem that π2(G/H ) can be identified with
π1(H )/π1(G). Here, π1(G) is the first homotopy group of G whose elements are
inequivalent mappings from a circle S1 to G and similarly for H .

In the example just considered, G = SO(3) and H = U(1). Also
π1(U(1)) = Z , the integers, with the value of the integer being the winding
number, i.e. the number of times we wind around the circle defined by U(1) as we
wind once around the circle in coordinate space. Less obviously, π1(SO(3)) =
Z2, the integers modulo 2. In this case, therefore, π2(G/H ) = Z/Z2 or the even
integers. This is why we found magnetic charges in multiples of 4π/g which is
twice the Dirac magnetic monopole charge.
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When H is SU(3) × SU(2) × U(1), which will be the case for a phase
transition in which the grand unified theory breaks spontaneously to the standard
model, then π1(H ) is just π1(U(1)) = Z , because π1(SU(3)) and π1(SU(2))

are both trivial. Thus, for such a spontaneous symmetry breaking, the resulting
second homotopy group is Z/π1(G). In particular, if π1(G) is trivial, as is the
case for the SU(5) grand unified group discussed in section 2.6, then π2(G/H ) =
Z and we have magnetic monopole solutions.

We now ask what masses are possessed by the magnetic monopoles in grand
unified theories. By analogy with (3.92), the magnetic monopole mass will be of
order 4πη/gG , where η is the expectation value of the Higgs scalar responsible for
breaking the grand unified symmetry and gG is the value of the gauge coupling
constant for the grand unified group at the unification scale. In the case of the
SU(5) grand unified theory of section 2.6, η, which is identified with φc, is of
order 1015 GeV and gG is of order 1. Thus, we expect the magnetic monopole
mass mM to be of order 1016 GeV. In the case of the supersymmetric SU(5) grand
unified theory of section 2.7, with a unification scale of 2 × 1016 GeV, which is
1.5 orders of magnitude greater than in the non-supersymmetric case, a magnetic
monopole mass of order 1017–1018 GeV is to be expected.

3.10 Abundance of magnetic monopoles

Magnetic monopoles form as the phase transition from the SU(5) symmetric
phase to the standard model SU(3) × SU(2) × U(1) phase occurs. This is
the result of the expectation values of the Higgs field only being correlated over
some finite distance. The expectation values of the Higgs field at different points
in space will not be aligned to produce a uniform Higgs field over distances
greater than this. Thus, we can expect topologically non-trivial configurations
to be produced, in particular, magnetic monopoles. The number of magnetic
monopoles formed [16, 17] should be determined as to order of magnitude by
the distance over which the Higgs expectation values are correlated [1, 9].

There are two effects which can limit the range over which this correlation
occurs. The first is the statistical-mechanical thermal average over the product
of the two Higgs fields. For a second-order phase transition, this correlation
length is of order T−1

c but can be larger for a first-order phase transition, which
proceeds through the formation of bubbles of the low-temperature phase which
then coalesce. The second effect is the general-relativistic particle horizon dH .
Correlations cannot occur over distances greater than the distance dH that light
has been able to travel since the big bang. For a Friedman–Robertson–Walker
(FRW) universe, as discussed in section 1.2, the proper distance at time t from
any point to the particle horizon is

dH (t) = R(t)
∫ t

0

dt ′

R(t ′)
. (3.115)
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Barring cosmological inflation (to be discussed in later chapters), the growth of
R(t) with time is according to the power law

R(t) ∼ tn (3.116)

(with n = 1
2 for a radiation-dominated universe). Then

dH (t) = t

1− n
(3.117)

provided n 
= 0. Thus, dH (t) is of order t . We require the particle horizon at
time tc that the phase transition is completed. A slightly different discussion is
required for second-order (or weakly first-order) and first-order phase transitions.

For a second-order phase transition, the phase transition is completed at the
critical temperature Tc. For the radiation-dominated era of the FRW universe,
there is the connection (see section 1.3) between the time t since the big bang and
temperature T :

t � 0.3N−1/2∗
m P

T 2
(3.118)

where m P is the Planck mass (∼1019 GeV) and N∗ is the effective number of
degrees of freedom at temperature T :

N∗ = NB + 7
8 NF . (3.119)

NB and NF are, respectively, the numbers of bosonic and fermionic degrees of
freedom for particles with mass small compared to T , in the sense described after
(2.19). For approximately one monopole per horizon volume, the number density
nM of monopoles should be

nM (Tc) ∼ (dH (tc))
−3 ∼ t−3

c ∼ N3/2∗ T 6
c m−3

P (0.6)−3 (3.120)

where we have taken
dH (tc) = 2tc (3.121)

for the radiation-dominated era. If we compare this with the entropy density of
(2.21),

s = 2π2

45
N∗T 3 (3.122)

then
nM (Tc)

s(Tc)
∼ 10.6N1/2∗ T 3

c m−3
P . (3.123)

At temperatures below Tc but above the electroweak phase transition, the
appropriate value of N∗ is that for the SU(3)× SU(2)×U(1) standard model:

N∗ = 106.75. (3.124)
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Thus,
nM (Tc)

s(Tc)
∼ 102

(
Tc

m P

)3

. (3.125)

Assuming that the expansion of the universe for T < Tc is adiabatic, then
s ∝ R−3 and the ratio nM (T )/s(T ) does not change. As a consequence, the
monopole contribution �M h2 to �mh2 today is predicted to be many orders
of magnitude greater than the observational bound of about 0.15. For a non-
supersymmetric GUT theory with Tc of order 1015 GeV and a magnetic monopole
mass mM of order 1016 GeV, �M h2 is 14 orders of magnitude greater than this
upper bound. For a supersymmetric GUT theory with Tc of order 1016 GeV and
a magnetic monopole mass mM of order 1017–1018 GeV, the situation is even
worse with �M h2 some 18–19 orders of magnitude greater than the upper bound
(exercise 10).

In the case of a first-order phase transition, the transition does not proceed
until some temperature below Tc at which the bubble nucleation rate for bubbles
of the low-temperature phase is of the same order as the expansion rate H for
the universe. We expect the Higgs expectation values to be correlated within
a bubble but uncorrelated between any two bubbles. Thus, the number density
of monopoles (or antimonopoles) produced should be of the order of ( 4

3πr3
b )−1,

where rb is the average radius of a bubble at a time when the bubbles have
expanded to just fill the whole of space. The universe supercools at the first-
order phase transition but reheats when the bubbles coalesce, so that the entropy
density after reheating is 2π2 N∗T 3

c /45, as in the second-order case. Thus, for a
first-order phase transition,

nM

s
∼ 45

2π2
N−1∗ T−3

c

(
4

3
πr3

b

)−1

. (3.126)

The value of rb has been estimated [18] leading to a value of �M h2 even larger
than in the second-order phase transition case.

In either case, if magnetic monopoles form at a grand unified phase
transition, some mechanism is required to dilute the monopole density by many
orders of magnitude. The most obvious mechanism would be annihilation of
monopoles and antimonopoles. However, this has been estimated [16] and there
is no significant effect for nM/s � 10−10 and, for larger values of nM/s,
the annihilation process cannot reduce nM/s much below 10−10. For the non-
supersymmetric case, this mechanism is ineffective and, for the supersymmetric
case, it can do no more than reduce the monopole abundance closer to that for
the non-supersymmetric case. A possible mechanism that can do the trick is
cosmological inflation, which will be discussed in later chapters.

After some mechanism has reduced the monopole abundance to a value
compatible with the bound on �mh2, any residual monopole density can have
important astrophysical consequences [19]. For instance, because the expectation
value of the grand unified Higgs field approaches zero as the centre of the
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monopole is approached, the SU(5) grand unified symmetry is essentially
unbroken in the core of the monopole. Consequently, when a nucleon encounters
a magnetic monopole, decay of the nucleon can be induced by the baryon-number
non-conserving interactions of the lepto-quark fields of the SU(5) grand unified
theory. In this way, the magnetic monopoles collected by stars in the course of
time will cause emission of radiation from neutron stars. This puts severe limits
on the flux of magnetic monopoles. More details of this and other astrophysical
effects may be found elsewhere [19].

3.11 Exercises

1. Calculate the energy of a kink or antikink soliton solution.
2. Compare the total energy associated with a plane domain wall with η =

100 GeV and area H−2
0 with the known mass of the universe within a Hubble

volume H−3
0 .

3. Derive equation (3.16) for the dependence of a global cosmic string on the
cylindrical polar coordinate ρ.

4. Check that the Lagrangian (3.23) possesses the local U(1) gauge symmetry
(3.26) and (3.27).

5. Show that the magnetic flux carried by a local cosmic string is given by
(3.30).

6. Derive the string equation of motion (3.61) and the constraints (3.62) and
(3.63) by varying the action (3.55) with respect to Xµ and hαβ .

7. Derive the covariant derivative (3.83) for a monopole solution.
8. Derive equations (3.87) and (3.88) for the form of a monopole solution.
9. Derive equation (3.96) for the magnetic field due to a magnetic monopole.
10. Estimate the monopole contribution to �h2 in non-supersymmetric and

supersymmetric grand unified theories.

3.12 General references

The books and review articles that we have found most useful in preparing this
chapter are:

• Hindmarsh M B and Kibble T W B 1995 Rep. Prog. Phys. 58 477
• Vilenkin A 1985 Phys. Rep. 121 263
• Kolb E W and Turner M S 1990 The Early Universe (Reading, MA:

Addison-Wesley)
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Chapter 4

Baryogenesis

4.1 Introduction

The success of the standard model in describing the fundamental interactions has
the consequence, among many others, of verifying the TCP invariance of nature.
This requires that, for each particle X having mass m X , decay width �X and
quantum numbers QX etc, there is an antiparticle X̄ with the same mass and
width, m X̄ = m X , �X̄ = �X but with opposite quantum numbers QX̄ = −QX

etc. One might, therefore, suppose that the world we inhabit would share this
symmetry and contain equal numbers NX of particles and antiparticles NX̄ = NX .

This is clearly not the case. We know that the solar system is made of matter
(protons, neutrons, electrons) and not antimatter, and the experimental bound on
antihelium is [1]

n4He

n4He
< 3.1× 10−6 at 95% CL. (4.1)

Any region of antimatter must be well separated from regions of matter, since,
in any region where protons and antiprotons coexisted, their annihilation into
pions with the subsequent π0 → 2γ decays would significantly distort the
cosmic microwave background. The data require that such domains of matter
and antimatter are separated by a length scale lB with, conservatively,

lB � 3 kpc (4.2)

the radius of our galaxy, and probably [2, 3]

lB � 10 kpc (4.3)

the scale of the Virgo cluster.
The asymmetry between baryons (b) and antibaryons (b) may be quantified

by the difference in their number densities nB ≡ nb−nb. However, the expansion
of the universe dilutes both nb and nb and, hence, their difference, since, as
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explained in section 1.4, each scales as R(t)−3, where R(t) is the cosmological
scale factor. It is, therefore, customary to use the ratio

η ≡ nB

nγ

(4.4)

to measure the asymmetry. nγ is the photon number density given by the
Boltzmann distribution (see section 5.1)

nγ = 2
ζ(3)

π2
T 3 (4.5)

when the temperature is T . From the measured microwave background [4],
T = T0 = 2.725± 0.002 K at present and this gives

nγ ≈ 411 cm−3. (4.6)

The present net baryon number density may be written in terms of the current
critical density, defined in (1.37),

ρc = 3

8π2
m2

P H 2
0 = 1.88h2 × 10−29 g cm−3 (4.7)

where h ≡ H0/100 km s−1 Mpc−1 measures the present Hubble constant,
m P ≡ G−1/2

N = 1.22× 1019 GeV is the Planck mass and [5]

h = 0.0.71+0.04
−0.03. (4.8)

Then

nB = �B

m B
ρc = 1.1× 10−5�Bh2 cm−3 (4.9)

and
η = 2.65× 10−8�Bh2 (4.10)

where �B ≡ ρB/ρc measures the baryon energy density as a fraction of the
critical density. The measured primordial deuterium and hydrogen abundances
require [5]

�Bh2 = 0.024± 0.001 (4.11)

which gives
η = (6.36± 0.26)× 10−10. (4.12)

The conservation of entropy in a comoving volume, when the universe is in
local thermal equilibrium, means that the entropy density s also scales as R(t)−3.
Thus, the baryon asymmetry may alternatively be measured by

ηB ≡ nB

s
(4.13)
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where

s = 2π2

45
g∗S,T T 3 (4.14)

with

g∗S,T =
∑

bosons

gi

(
Ti

T

)3

+ 7

8

∑
fermions

gi

(
Ti

T

)3

(4.15)

counting the total effective number of massless degrees of freedom at the
temperature T , gi = 1 for a real scalar, gi = 2 for a real (massless) gauge
field, gi = 4 for a spin- 1

2 Dirac field and gi = 2 for a Weyl (chiral) field. We are
allowing the possibility that different species are at different temperatures. When
all Ti = T , g∗S,T = N∗ given in equation (1.104), and (4.14) reduces to (2.21).
This is an excellent approximation until t ∼ 1 s (or T ∼ 1 MeV). However, as
noted in section 1.8, it is not true today. The advantage of using ηB as a measure of
the baryon asymmetry is that it is conserved, as long as baryon-number-violating
interactions occur very slowly. The relationship between s and nγ is

s = π4

45ζ(3)
g∗S,T nγ � 1.8g∗S,T nγ (4.16)

so
η = 1.8g∗S,TηB . (4.17)

Thus, η is not constant in time, since g∗S,T changes as the temperature drops
and the number of effective massless modes decreases. The present entropy
s0 = 7.0394nγ,0 and the same data (4.12) give

ηB = (9.03± 0.37)× 10−11. (4.18)

So the challenge confronting theorists is to explain this small, non-zero
number. The natural assumption is that ‘originally’ there was zero asymmetry. In
equilibrium at a temperature T � 1 GeV, the nucleon and antinucleon densities
are

nN = nN = 2

(
mN T

2π

)3/2

e−mN /T . (4.19)

As the universe cools, the nucleons and antinucleons annihilate with a rate

�ann = nN 〈σannv〉 (4.20)

where 〈. . .〉 denotes thermal averaging, σann is the annihilation cross section and
v is the relative velocity. The annihilation continues so long as the rate is larger
than the expansion rate H of the universe:

H =
(

8πρ

3m2
P

)1/2

= 2π

3

(πg∗,T
5

)1/2 T 2

m P
(4.21)
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assuming that the energy density ρ = (π2/30)g∗,T T 4 is dominated by relativistic
particles. Here

g∗,T =
∑

bosons

gi

(
Ti

T

)4

+ 7

8

∑
fermions

gi

(
Ti

T

)4

(4.22)

satisfies g∗,T = g∗S,T = N∗ (with N∗ defined in (1.104)) when all particle species
i are at the same temperature Ti = T . (See section 5.1.) The thermal average

〈σannv〉 � m−2
π (4.23)

and, at T = T f � 20 MeV, the annihilation rate falls below the expansion rate,
nucleons and antinucleons are so dilute that they cannot annihilate further and
their number densities become frozen at

nN

nγ

= nN

nγ

= 2π2

ζ(3)

(
mN

2πT f

)3/2

e−mN /T f (4.24)

� 10−18 (4.25)

using (4.6). This is far smaller than the value (4.12) which derives from the
measured primordial abundances of the light nuclei. Thus, the assumed zero
initial asymmetry is inconsistent with the nucleosynthesis data.

Of course, statistical fluctuations can generate a non-zero initial asymmetry.
At present our galaxy contains about 1079 photons and 1069 nucleons. When
T � 1 GeV, however, the comoving volume containing our galaxy contained
about 1079 baryons and antibaryons. Thus, statistical fluctuations might generate
an asymmetry

NB − NB ∼
√

N (4.26)

so that, instead of (4.19), we have

nN − nN ∼
1√
N

nN ∼ 10−39.5nN (4.27)

which again is far too small to explain the nucleosynthesis data.
The conclusion is that the initial baryon asymmetry must be non-zero to

explain the size of the asymmetry we observe today. Of course, the required value
may be input by hand as an initial condition but aesthetically this is unattractive.
The consensus is that the asymmetry derives from new physics in the early
universe. We turn next to the three necessary conditions for baryogenesis, first
derived by Sakharov [6].

4.2 Conditions for baryogenesis

If we start from a universe with a net baryon number B of zero and evolve to
one with a non-zero value, it is clear that baryon number is not conserved. Thus
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the first condition is that there are baryon-number non-conserving interactions
in nature. Aside from the baryon-number asymmetry itself, there is no direct
experimental evidence of such interactions and any theory which contains them
is constrained by the current lower bound on the lifetime (τp) of the proton [7]

τp � 1031–1033 yr. (4.28)

The generation of a non-zero baryon number for the universe, or
‘baryogenesis’, also requires that there are C- and CP-violating interactions in
nature. To see this, suppose that a process i → f , with initial state i and final state
f , violates baryon-number conservation, so Bi − B f 
= 0. If charge conjugation
C were an exact symmetry, then the process ī → f̄ , where ī is obtained from i by
replacing all particles by their antiparticles and similarly for f̄ , would occur at the
same rate as the former. Since Bī = −Bi and B f̄ = −B f , the net baryon number
produced by the two processes Bi − B f + Bī + B f̄ is zero. A similar argument
applies if CP-invariance were exact; parity reversal P reverses the momenta of all
participating particles but when these are integrated over the (identical) allowed
phase space the net baryon number produced by the two processes is again zero.
The TCP-invariance of any particle physics model (T is time reversal) ensures that
if there is CP-violation, then there is also T-violation and it is easy to see that if
T-invariance were an exact symmetry, then baryon number would be conserved.
Of course, we have long known that C-invariance is violated by weak interactions
and that CP-violation occurs at the milliweak level in kaon decays [8]. There is
also limited evidence for T-violation in kaon decays [9]. Thus there is no a priori
need for new physics from this condition.

The final condition is that the baryon-number non-conserving processes
occur when the universe is not in thermal equilibrium. To see this, consider a
particle X with non-zero baryon number in thermal equilibrium at a temperature
T � m X . The number density nX of X particles is given by

nX � gX (m X T )3/2e(−m X+µX )T (4.29)

where µX is the chemical potential. Likewise, in thermal equilibrium the number
density nX̄ of the antiparticles X̄ is

nX̄ � gX (m X T )3/2e(−m X+µX̄ )T . (4.30)

If X, X̄ participate in baryon-number non-conserving processes, as required by
the first condition, then the process

X X → X̄ X̄ (4.31)

is allowed and, in equilibrium, this requires

2µX = 2µX̄ . (4.32)
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Then the asymmetry vanishes, since

η ∝ nX − nX̄ = 0. (4.33)

Only a departure from thermal equilibrium will permit an asymmetry. Such
a departure can arise, for example, during a phase transition in which gauge
symmetry breaking occurs. It can also arise due to the expansion of the universe
during the decay of a heavy particle.

4.3 Out-of-equilibrium decay of heavy particles

Given enough time any particle, no matter how weakly it interacts, will reach
thermal equilibrium. However, in an expanding universe, it becomes increasingly
difficult for any given species X of particle to remain in thermal equilibrium.
This is because the expansion dilutes the densities of all particles with which
X interacts and thereby inhibits the rate of the interactions needed to maintain
equilibrium; and also because the rate of decay �X of the X particles eventually
falls below the expansion rate H of the universe and the decays are unable to
reduce the numbers of X particles to the levels required to stay in equilibrium.

Suppose X is a superheavy boson, having non-zero baryon number, which
decays to lighter fermions f in a baryon-number non-conserving process. Gauge
vector bosons and Higgs scalar particles with these properties arise naturally
in grand unified theories (GUTs) which unify the strong and electroweak
interactions [10, 11]. At high temperatures T � m X , we assume that all particles
are in equilibrium, and that the net baryon number B is zero. The number
densities of the X particles and their antiparticles are

nX = nX̄ =
ζ(3)

π2 gX T 3 (4.34)

with gX = 2, 1 corresponding respectively to X being a vector, scalar particle.
Thus, using (4.5),

nX

nγ

= nX̄

nγ

= 1

2
gX . (4.35)

To maintain equilibrium densities as the universe expands, the X and X̄ particles
must reduce their numbers sufficiently and, so long as they are able to do so, the
net baryon number remains zero. For T � m X , the equilibrium densities will then
reduce relative to that of the photons. From the analogue for X particles of (4.19)
and (4.5), the relative densities are given by

neq
X

nγ

= neq
X̄

nγ

= gXπ2

2ζ(3)

( m X

2πT

)3/2
e−m X /T . (4.36)

For baryogenesis, the most important quantity in determining whether thermal
equilibrium can be maintained when T ∼ m X is the decay rate �X of the
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X particle, which controls the numbers of X and X̄ particles. Unless this is
sufficiently rapid, thermal equilibrium densities cannot be maintained as T falls.
If at some temperature T � m X the X bosons cannot decay in the time scale H−1

associated with the expansion of the universe, then they decouple from the thermal
bath while they are still relativistic and their densities satisfy (4.35). Thus at a
lower temperature T � m X , their abundance is much larger than the equilibrium
densities satisfying (4.36). The condition for this to happen is that

�X � H |T=m X
. (4.37)

Using (4.21), this requires

m2
X �

3

2π

(
5

π

)1/2

N−1/2∗ �X m P (4.38)

assuming that all (relativistic) particle species are at the same temperature, so
g∗,T = N∗. The overabundance which occurs when this condition is satisfied
allows the possibility of baryogenesis. Whether or not it is satisfied depends upon
the particular GUT model in which the X particles arise.

If X is a superheavy gauge boson, for example,

�X ∼ αG m X (4.39)

where αG = g2
G/4π is the GUT ‘fine structure constant’. Then (4.38) gives

m X � N−1/2∗ αG m P . (4.40)

For the non-supersymmetric SU(5) GUT (which, incidentally, does not satisfy
the constraint (4.28) on the proton lifetime),

αG ∼ 1
42 m X ∼ 1015 GeV N∗ = 427

4 (4.41)

provided that the colour triplet, electroweak Higgs particles are superheavy, the
constraint (4.40) is not obviously satisfied. However, for the supersymmetric
SU(5) GUT,

αG ∼ 1
25 m X ∼ 2× 1016 GeV N∗ = 915

4 (4.42)

the larger values of N∗ and m X outweigh the larger value of αG and the non-
equilibrium condition (4.38) is marginally satisfied.

However, if X is a superheavy Higgs particle, its decay width

�X ∼
(

m f

mW

)2

αGm X (4.43)

can be much smaller than that of the superheavy gauge boson, because the Yukawa
coupling is suppressed (unless f is a top quark) by a factor m f /mW relative to the
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gauge coupling [10, 11]. Then the condition (4.38) can be easily satisfied, since,
in this case, we require only that

m X � N−1/2∗
(

m f

mW

)2

αG m P . (4.44)

In supergravity GUTs, baryon number non-conserving interactions can also
arise via hidden-sector effects [12]. Then X can be an observable-sector gauge-
singlet scalar which is coupled only gravitationally to observable-sector fermions.
In this case,

�X ∼ m3
X

m2
P

(4.45)

and (4.38) gives

m X � N1/2∗ m P (4.46)

which is always satisfied. Thus, the general conclusion is that the decay of
superheavy scalar particles in a supersymmetric or supergravity GUT affords the
best opportunity for the out-of-equilibrium decays necessary for baryogenesis.

As soon as the age H−1 of the universe becomes equal to the lifetime �−1
X of

the X, X̄ particles they begin to decay and generate a non-zero net baryon number.
Using (4.37), this occurs at a temperature Tdec satisfying

H |T=Tdec
= �X � H |T=m X

. (4.47)

Thus, from (4.21),
Tdec < m X . (4.48)

Suppose that the X particle has decay channels X → fn to a final state fn

producing baryon number Bn . Then the X̄ has decay channels X̄ → f̄n producing
baryon number−Bn , and the net baryon number produced by all of these decays
is

�B = �−1
X

∑
n

Bn[�(X → fn)− �(X̄ → f̄n)]. (4.49)

This gives a net baryon number density arising from the decays of

nB = nX�B � nγ �B (4.50)

using (4.35). Thus, the baryon asymmetry (4.4) is

η ≡ nB

nγ

� 1

2
gX�B (4.51)

or

ηB ≡ nB

s
� 45ζ(3)

2π4

gX

N∗
�B. (4.52)

Copyright © 2004 IOP Publishing Ltd



Baryogenesis in GUTs 99

As anticipated, �B and, hence, the baryon asymmetry, vanishes if none of the X
decays produces a baryon number and if there is no C- or CP-violation. Further,
if thermal equilibrium were maintained any net baryon number produced by the
decays is cancelled by inverse decay.

The foregoing analysis presumed that the X and X̄ decays release no entropy,
which is a poor approximation if Tdec � m X . In this case, the energy density ρ of
the universe is dominated by X particles. If this is converted entirely into radiation
at a reheating temperature TR given by

ρ � ρX � nX m X = π2

30
N∗T 4

R =
3

8π
m2

P�2
X (4.53)

using (4.47), then

nX

s
= 3

4

TR

m X
= 3

4

(
45m2

P�2
X

4π3 N∗m4
X

)1/4

(4.54)

and the baryon asymmetry becomes

ηB = 3

4

TR

m X
�B (4.55)

instead of (4.52). Either way, it seems that an encouragingly small amount of
CP-violation is entailed to generate an asymmetry on the scale (4.18) observed.
To see whether it is, we need to calculate �B in the various models containing
baryon number and CP non-conservation.

4.4 Baryogenesis in GUTs

Grand unified theories (GUTs) seek to unify the three separate gauge groups
SU (3), SU (2) and U (1) of the standard model in a simple group G:

G ⊃ SU(3)× SU(2)×U(1). (4.56)

(See [13] for a review.) The GUT hypothesis is that above some high energy
(GUT) scale MG ,

MG � 1015 GeV (4.57)

G is an exact symmetry, which is spontaneously broken at the GUT scale to the
standard model, which is itself spontaneously broken at the electroweak scale. In
this way the (low-energy) gauge coupling strengths (α1, α2, α3) of the standard
model are all determined from the unknown (high-energy) coupling strength αG

of G, by using the renormalization group equations to ‘run’ between the GUT and
the electroweak energy scales. We have discussed this in some detail in [10] but
the essential point is that the evolution of the coupling strengths depends upon
the matter content of the low-energy theory. Since neither αG nor mG is known a
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priori, the GUT hypothesis can only be tested by starting from the values of the
coupling strengths measured at the electroweak scale and running to high energies
to see whether they converge to a single value (αG ).

The known matter content of the standard model consists of three generations
of

QL = (3, 2, 1
6 ) B = 1

3 L = 0

uc
L = (3, 1,− 2

3 ) B = − 1
3 L = 0

dc
L = (3, 1, 1

3 ) B = − 1
3 L = 0

L L = (1, 2,− 1
2 ) B = 0 L = 1

ec
L = (1, 1, 1) B = 0 L = −1

(4.58)

using the notation (n3, n2, Y ), where n3 specifies the colour SU(3)

representation, n2 the weak SU(2) representation and Y is the weak hypercharge.
B and L are the baryon and lepton numbers (the superfix c indicates the charge
conjugate particle). In addition, the electroweak Higgs

h1 = (1, 2, 1
2 ) (4.59)

is an essential ingredient of the standard model, whose discovery is currently
awaited, hopefully at the LHC. If we assume just this matter content, besides the
12 gauge vector bosons of the three gauge groups, it is found that the coupling
strengths converge and reach a point of closest approach but not coincidence, at
the energy scale and coupling strength given in (4.41).

It is remarkable that the couplings come as close as they do and this in
itself lends general support to the GUT hypothesis. However, the failure to
converge precisely to a common value shows that if the GUT hypothesis is
correct, then there must be matter additional to that of the standard model.
Remarkably, the supersymmetric standard model, in which all of the matter
particles (4.58) have supersymmetric (bosonic) partners (sparticles), all of the
gauge bosons have (fermionic) supersymmetric partners (gauginos) and the Higgs
doublet h1 has a (fermionic) higgsino partner, does produce the convergence
sought [14]. The calculated unification scale and coupling constant are given
in (4.42). (Supersymmetry requires an additional Higgs doublet

h2 = (1, 2,− 1
2) (4.60)

plus its superpartner.)
This convergence represents the best evidence we have both for the GUT

hypothesis and for low-energy supersymmetry and it is, therefore, natural to
wonder whether a GUT with this matter content produces baryogenesis at the
level needed to produce the observed asymmetry (4.12) or (4.18). In a general
GUT, the matter content (4.58) (and Higgs fields) of the standard model, or its
supersymmetric extension, constitute partial or complete representations R of the
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GUT gauge group G. The coupling to the gauge bosons AA
µ of the fermionic

matter has the standard form

� =
∑

R

Rγ µ(i∂µ − gG A
A
µt A)R (4.61)

where t A are the matrix representations of G corresponding to the representation
R to which the fermions belong. For the SU(5) GUT, each generation of
(4.58) belongs to two irreducible representations 5̄ and 10 of the group, which
decompose into representations of SU(3)c × SU(2)L × U(1)Y as follows:

5 = (3, 1, 13 )+ (1, 2,− 1
2 ) = [dc

L, L L ] (4.62)

10 = (3, 2, 16 )+ (3, 1,− 2
3 )+ (1, 1, 1) = [QL, uc

L , ec
L ]. (4.63)

Evidently the matrix t A couples the gauge boson AA
µ to fermions in

the representations R and R̄, where R̄ contains the complex conjugate
representations, to those given in (4.58), i.e.

QL = (3, 2,− 1
6 ) B = − 1

3 L = 0

uc
L = (3, 1, 23 ) B = 1

3 L = 0

d
c
L = (3, 1,− 1

3 ) B = 1
3 L = 0

L L = (1, 2, 12 ) B = 0 L = −1

ec
L = (1, 1,−1) B = 0 L = 1.

(4.64)

For baryogenesis, we are concerned with those gauge bosons which are coupled
to fermions with a net non-zero baryon number. In the case of the SU(5) GUT
with the gauge bosons in the adjoint 24 representation, all of the 12 gauge bosons
additional to the 12 of the standard model have this property. They transform as

(3, 2,− 5
6 )+ (3, 2, 56 ) (4.65)

representations of SU(3)× SU(2)× U(1). We denote the (colour triplet) SU(2)

doublet by (X, Y ), and the SU(3)× SU(2) symmetry requires that

m X = mY � MG . (4.66)

The allowed decay modes

X → dν, ul, dcuc (4.67)

Y → dl, ucuc

are shown in figure 4.1.
All violate baryon number conservation. In all cases the difference in the

baryon number B and the lepton number L of the final state is

B − L = − 2
3 (4.68)
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Figure 4.1. Baryon-number non-conserving decays of SU(5) GUT gauge bosons.
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Figure 4.2. Gauge vector boson vertices in the minimal SU(5) GUT.

so we may consistently assign (X, Y ) this value of B−L, which shows that B−L
is conserved in all gauge-boson-mediated processes. B , however, is not separately
conserved. Indeed couplings (4.67) and their complex conjugates induce the
proton decay modes

p → π0e+, π+ν (4.69)

at a rate which, in the non-supersymmetric model, is calculated [15] to be about
one hundred times the measured upper bound implied by (4.28). All of these
couplings arise from the Feynman diagram vertices shown in figure 4.2.

Higgs bosons are needed in a GUT to generate both the superheavy masses
needed for the non-standard model gauge bosons and Higgs particles, as well as
electroweak scale masses for the W± and Z gauge bosons. In the minimal non-
supersymmetric SU(5) GUT, the electroweak Higgs doublet is accommodated
in a 5 representation H , which in addition includes colour triplet scalars H3
transforming as (3, 1,− 1

3 ) of SU(3) × SU(2) × U(1). The Yukawa couplings
have the form

�Y = χ[I J ]h Dψ I H 
J + ε I J K L Mχ[I J ]hU χ[K L]HM + h.c. (4.70)

where ψ I , χ[I J ] are the 5, 10 representations of SU(5) which include the matter
content (4.58) of the standard model. hU , h D are complex matrices (hU,D) f g

acting on the (undisplayed) generation-space labels of ψ I and χ[I J ]. Then the
colour triplet Higgs particles have decay modes similar to those of the X -boson

H3 → ucdc, ul, dν (4.71)

all of which violate baryon-number conservation. These are shown in figure 4.3.
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Figure 4.3. Baryon-number non-conserving decays of SU(5) GUT colour triplet Higgs
bosons.

As before, in (4.68), the difference in the baryon number B and the lepton
number L is the same for all decays:

B − L = − 2
3 (4.72)

so B − L is conserved in all Higgs mediated processes. CP-violation arises from
complex phases which cannot be absorbed by field redefinitions but, as we shall
see, there is no contribution to �B at tree level. These couplings arise from the
Feynman vertices shown in figure 4.4.
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Figure 4.4. Higgs (5) boson vertices in the minimal SU(5) GUT. Single lines represent 5
representations, double lines 10 representations.

We have already noted that, in the minimal SU(5) GUT, the requirements
(4.40), (4.44) necessary for departure from thermal equilibrium are more likely to
be satisfied by the massive, colour-triplet Higgs scalar H3 than by the massive
gauge bosons, so X ,Y decays will not contribute significantly to the baryon
asymmetry of the universe. Nevertheless, for completeness, we consider the
contributions to �B defined in (4.49) from both sources. First we note that the
tree-level contribution shown in figures 4.1 and 4.2 is zero. This is clear because
in the Born approximation the process X → dν, for example, and X̄ → d̄ν̄

derive from terms in the Lagrangian which are Hermitian conjugate to each other,
so their amplitudes are complex conjugates. Since the kinematics of the two
processes is identical,

�(X → dν)|Born = �(X̄ → d̄ ν̄)|Born (4.73)

and the contribution to �B given in (4.49) is zero. The same argument applies to
the decays of Y and H3.

At the next order, we need to include radiative corrections and look for (CP-
violating) contributions to �B arising from the interference between the Born
terms and these single-loop radiative corrections. For example, consider the
radiative correction to the decay

H3 → u f �g (4.74)

shown in figure 4.5 ( f, g are generation labels).
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Figure 4.5. Radiative correction to H3 → ul .

The matrix element has the form

�� ∼ (h Dh†
DhU ) f g IH (4.75)

where IH is the Feynman loop integral involved. Since the mass of the colour-
triplet Higgs satisfies

m H3 >> mu + m� (4.76)

IH is complex. To one-loop order, the square of the total matrix element �
satisfies

|�|2 − |�0|2 � 2 Re[���
†
0]

∝ 2 Re[(h Dh†
DhU ) f g(h

†
U )g f  IH ] (4.77)

(no summation). �0 is the amplitude for the Born approximation, shown
in figure 4.3(b). For the corresponding antiparticle decay, we just replace all
coupling constants by their complex conjugates and the difference between the
rates is given by

�(H3 → u f �g)− �(H̄3 → ū f �̄g) ∝ Im[(h Dh†
DhU ) f g(h

†
U )g f ] Im(IH ). (4.78)

Thus, when we sum over the generation labels the contributions cancel, since

tr(h Dh†
DhU h

†
U ) = real. (4.79)

In fact, all such one-loop interference terms are the absorptive parts of one
or other of the two-loop diagrams shown in figure 4.6; the absorptive part is
obtained by cutting the internal (fermion) loop and placing the cut fermions on
the mass shell. The contribution just discussed arises from the absorptive part of
the diagram in figure 4.6(g). It is clear that all of the other diagrams also make
zero contribution to the baryon asymmetry [16]: the gauge couplings are real and
the scalar couplings enter only in the combinations

tr(hU h†
U ) = real

tr(h Dh†
D) = real. (4.80)
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Figure 4.6. Two-loop diagrams giving one-loop radiative corrections to gauge boson and
Higgs boson decays.

The first non-zero contributions arise only from the three-loop radiative
corrections to H3 decays, and the four-loop corrections to X ,Y decays.
For example, there are three-loop radiative corrections to H3 decay whose
contributions to the difference between the decay widths of H3 and H̄3 is
proportional to ImT , where

T ≡ tr(h†
DhU h†

U hU h†
Dh Dh†

U h D) (4.81)
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which, in general, is non-zero [17–19]. The Yukawa couplings hU,D determine
the fermion masses. The fermions in the three families of 10 and 5̄ representations
are unitarily related to the mass eigenstates, the connection being given by

hU = gG√
2mW

PmU Q (4.82)

h D = gG√
2mW

Rm D S (4.83)

where P, Q, R, S are unitary 3× 3 matrices and

mU = diag(mt , mc, mu) (4.84)

m D = diag(mb, ms, md ). (4.85)

Then

2 Im T = g8

16m8
W

tr(m2
U [mU Am2

D A†, mU Bm2
D B†]) (4.86)

where A and B are the unitary matrices

A = P† R B = QS†. (4.87)

It is easy to see that the dominant contribution to the trace is proportional to [20]

m4
bm3

t mc f (θ) sin δ (4.88)

where f (θ) is a real function of the mixing angles characterizing the matrices
A, B and δ is a CP-violating phase. Remembering that the total decay width of
the (colour-triplet) Higgs scalar is given by (4.43) with m f = mt the heaviest
fermion, we conclude that the baryon asymmetry deriving from the minimal
SU(5) GUT satisfies

�B �
(αG

2π

)3 m4
bmt mc

m6
W

∼ 10−15. (4.89)

However, using (4.52) and the observational data (4.18), we require that

�B � 6N∗ × 10−10 � 10−7 (4.90)

so there is no doubt that this mechanism cannot explain the measured asymmetry.
In any case, we have already noted that this minimal theory gives an unacceptably
high proton decay rate.

The foregoing discussion suggests that to increase the predicted value of
�B , we need to arrange that the asymmetry can arise via one-loop corrections to
the Higgs decays. This entails enlarging the Higgs content. The simplest method
is to include a second 5 of Higgs scalars H ′, with a different mass or lifetime,
whose couplings are of the same form (4.70) but with the coupling matrices hU,D
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Figure 4.7. CP-violating, baryon-number non-conserving decays of X,Y bosons.

replaced by h′U,D . Then, besides the radiative correction to H3 decay shown in
figure 4.5, there will be a similar diagram involving H ′

3 exchange. The difference
between the decay rates now satisfies

�(H3 → u f �g)− �(H̄3 → ū f �̄g) ∝ Im[h′Dh†
Dh′U h†

U ] Im(IH ′) (4.91)

instead of (4.78). In general, this is non-zero [18].
Unfortunately, such a model is unsatisfactory in other respects. It will have

flavour-changing, Higgs-mediated neutral current decays [21] and, in addition,
like the model with a single 5 of Higgs, it continues to possess the strong CP
problem. (See section 5.3.1.) We shall see later that the most attactive solution
to the latter problem utilizes a Peccei–Quinn U (1) symmetry [22]. This requires
additional Higgs doublets, so that one doublet H is coupled only to dR quarks
and the other doublet H ′ only to u R quarks. This is realized in an SU(5) GUT
by coupling one Higgs 5 to the matter (5̄)(10) and the other to the (10)(10)

fields [23]. Thus, instead of (4.70), we have

�Y = χ[I J ]h Dψ̄ I H̄ J + χ[I J ]h′U χ[K L]H ′
Mε I J K L M + h.c. (4.92)

This looks as though the one-loop radiative correction shown in figure 4.5 is
now forbidden, since the exchanged Higgs has to have both D-type and U -
type couplings. However, it is allowed, since the Higgs mass eigenstates mix
H and H ′. Nevertheless, there is no CP-violation and, hence, no contibution
to the baryon asymmetry, for the reason (4.79) given earlier. Instead, in this
model, the (CP-violating) baryon asymmetry arises from the decays of X , Y
gauge bosons with a pair of Higgs bosons in the intermediate or final state [24,25]
(see figure 4.7), and a sufficient asymmetry arises for a wide range of parameters
[17, 26].

Another variant of the SU(5) minimal model is to introduce a Higgs
multiplet belonging to a different representation, i.e. not a 5. Since, in SU(5),

5× 5 = 10+ 15

5× 10 = 5+ 45

10× 10 = 5+ 45+ 50 (4.93)
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Higgs belonging to 10, 15, 45 or 50 representations can be coupled to the matter
fermions. In particular, the introduction of a 45 Higgs representation also allows
the generation of sufficient baryon asymmetry for a wide range of parameters [17].

4.5 Baryogenesis in SO(10) GUTs

We have discussed the SU(5) GUT at some length, despite its inadequacies.
There are, however, other GUTs, based on larger (higher-rank) groups, which
some consider to be more attractive, and which, in any case, possess features
which are not present in the SU(5) GUTs. In particular, as a vector-like theory,
SO(10) has the desirable feature of being automatically anomaly-free. Another
attraction is the fact that it includes all of the fermions of one generation within
a single irreducible 16-dimensional (spinor) representation of the group. In terms
of the representations of SU(5)×U(1) ⊂ SO(10), it decomposes as

16 = (1,−5)+ (5̄, 3)+ (10,−1) (4.94)

with the second number specifying the U (1) charge of the SU(5) irreducible
representation. The 5̄ and 10 irreducible representations are precisely those to
which the matter fermions are assigned in SU(5), shown in (4.62),(4.63), and the
extra SU(5) singlet state, which must exist if SO(10) is correct, could be a right-
chiral neutrino νR ∼ νc

L : this latter possibility looks feasible as well as attractive
in the light of evidence [27] for neutrino oscillations which can, of course, only
arise if neutrinos have (different) masses and, therefore, possibly right-chiral
components. (The existence of such a state also allows for the possibility of
a Majorana mass term.) The inclusion of both of the chiral components of all
fermions within the same GUT representation means that charge conjugation (C)
and parity reversal (P) are naturally symmetries of the GUT and are spontaneously
broken when the GUT breaks to a gauge group which does not have this property.
This occurs at a high scale if, as it might, SO(10) breaks to SU(5) or to
SU(5)×U(1). This happens if, for instance, the GUT symmetry-breaking Higgs
are also in a 16 representation.

However, there are other possibilities. Clearly

SO(10) ⊃ SO(6)× SO(4) (4.95)

so, since

SO(6) ∼= SU(4)

SO(4) ∼= SU(2)× SU(2) (4.96)

one possibility is that the SO(10) breaks at the GUT scale as

SO(10)
MG→ SU(4)× SU(2)L × SU(2)R ≡ G422. (4.97)
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This happens if, for instance, the GUT symmetry-breaking Higgs transforms as a
54-dimensional representation. Then the 16-dimensional fermion representation
is given by

16 = (4, 2, 1)+ (4̄, 1, 2)

=
[(

ui

di

)
L
,

(
νe

e

)
L

]
+
[(

dc
i−uc

i

)
L
,

(
ec

−νc
e

)
L

]
(4.98)

for the first generation. At later stages, the SU(4) breaks at a scale Mc and the
SU(2)R breaks at a scale MR as

SU(4)
Mc→ SU(3)c ×U(1)′ (4.99)

and
SU(2)R

MR→ U(1)T 3
R
. (4.100)

So either
G422

Mc→ G3122
MR→ G3121

M1→ Gsm (4.101)

or
G422

MR→ G421
Mc→ G3121

M1→ Gsm (4.102)

where

G3122 ≡ SU(3)c ×U(1)′ × SU(2)L × SU(2)R (4.103)

G3121 ≡ SU(3)c ×U(1)′ × SU(2)L ×U(1)T 3
R

(4.104)

G421 ≡ SU(4)× SU(2)L ×U(1)T 3
R

(4.105)

and Gsm = SU(3)c × SU(2)L ×U(1)Y is the standard model gauge group.
The content of the 4 representation of SU(4) under the decomposition (4.99)

is
4 = (3, 1

3 )+ (1,−1) (4.106)

since U(1)′ is a (traceless) generator of SU(4). We have used a normalization of
the hypercharge Y ′ which shows that, for fermions only,

Y ′ = B − L . (4.107)

This was first noted by Pati and Salam [28] and, for this reason U(1)′ is sometimes
denoted U(1)B−L . At any rate, unlike the SU(5) GUTs, it is possible to break
B − L conservation in SO(10) models. As previously noted, the scale M1 at
which U(1)′ and, therefore, B − L conservation is broken is not necessarily the
scale at which SO(10) is broken.

In fact, the SO(10) group has an element D which interchanges the charge
conjugate doublets within the 16 representation (4.98). To see this, we choose
the decomposition (4.95) so that the Cartan subalgebra of SO(6) is generated by
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the SO(10) generators M12, M34, M56 and that of SO(4) by M78, M9,10. The
Cartan subalgebras of SU(2)L ,R are then generated by T 3

L ,R = 1
2 (M78 ± M9,10).

We first note that
D ≡ M23 M67 (4.108)

where
(Mab)i j ≡ δa

i δb
j − δa

j δ
b
i (4.109)

is an element of SO(10). The action of D on the underlying 10-dimensional space
is to reflect the coordinates xa ↔ −xa (a = 2, 3, 6, 7) leaving the remainder
invariant. Thus, the effect of D on the Cartan subalgebra of SU(4) ∼= SO(6) is
to reverse the signs of the generators

D : T 3,8,15 → −T 3,8,15 (4.110)

while on that of SU(2)L × SU(2)R

D : T 3
L ↔ T 3

R . (4.111)

Thus,
D : (4, 2, 1)↔ (4̄, 1, 2) (4.112)

as asserted.
Because of this, unlike the SU(5) GUTs, a baryon asymmetry is often not

generated at the GUT-breaking scale but rather at the lower scale M1 at which
U(1)′ is broken. Whether or not this happens, of course, depends upon the Higgs
fields responsible for this symmetry breaking and their coupling to the matter
fields. The Higgs fields that couple to matter must be in one or more of the
SO(10) representations occurring in the product

16× 16 = 10s + 120a + 126s . (4.113)

For example, with the colour-triplet Higgs particles belonging to the 10-
dimensional representation, the symmetry (4.112) ensures that

�(H3 → �Q) = �(H̄3 → �̄Q̄) (4.114)

at one-loop level, so no baryon asymmetry results, similarly in the QQ channels
[29]. However, if the Higgs content is enlarged to include a 45-dimensional, a
126-dimensional and an additional 10-dimensional representations, then with a
suitable choice of 〈45〉 we can break

SO(10)→ G3122 (4.115)

in a way which breaks the D-symmetry (G3122 is defined in (4.103)). This is
done by ensuring that the non-zero VEVs are odd under D. In addition, the
extra Higgs content splits gL and gR , the coupling constants of the SU(2)L ,R

groups, and ensures that the colour-triplet Higgs mass eigenstates are complex
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superpositions of those coming from the two 10s. This is sufficient to generate a
baryon asymmetry at the GUT symmetry-breaking scale [29].

The lesson to be learnt from these considerations is that a baryon asymmetry
can arise in such theories but that the energy scale at which it arises may be
much lower than the GUT scale. The magnitude of any such asymmetry depends
sensitively on the details of the particular model but, in many models, there is
ample room in parameter space to accommodate the observed asymmetry.

4.6 Status of GUT baryogenesis

The discussion in the two previous sections of baryogenesis using the baryon-
number non-conserving interactions of a GUT was based upon the assumption
that the superheavy GUT gauge bosons or Higgs particles whose decays produce
the desired baryon asymmetry are, in the first place, in thermal equilibrium
and then, as the universe expanded and the temperature dropped, came out of
equilibrium when the condition (4.37) was satisfied. It is at least debatable
whether this assumption is well founded.

We shall see in chapter 7 that there are strong theoretical reasons, and some
support from observational data, for believing that the universe went through a
period of ‘inflation’, during which the scale factor grew by a factor of order
1027, so that the observable universe evolved from a single Hubble volume. It
is, therefore, essential that the baryon asymmetry we observe was generated after
inflation: any asymmetry generated earlier would be so diluted by the inflation
as to render it utterly unobservable at the present time. This is the source of the
difficulty with the scenario envisaged hitherto. To generate the required amount
of inflation requires the inflaton potential to be rather flat: (the ‘inflaton’ (φ) is the
presumed field whose evolution determines how much inflation actually occurs).
This means that the mass of the inflaton is relatively low [30], in the range

mφ � 1013–1015 GeV (4.116)

to account for the observed flatness and homogeneity of the universe and to solve
the horizon problem1. When it reaches the minimum of its potential, the inflaton
oscillates about its value at the minimum. As it does so, somehow, this low-
entropy, cold universe evolves into a hot universe dominated by radiation. The
key question is: What is the temperature of this ‘reheated’ universe? This is a
vital question because the bound (4.116) means that, in some cases,

mφ < 2m X (4.117)

where m X is the mass of the particle whose decays generate the baryon
asymmetry. This is the case in the minimal SU(5) GUT, for example, where

1 This is because m2
φ ∼ V ′′(φ), and the double derivative is constrained by the condition (7.45) with

V (φ) satisfying (7.117).
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X = H3 is the colour-triplet Higgs particle with

m H3 � 1014 GeV. (4.118)

In these circumstances, the decay

φ → X X̄ (4.119)

is kinematically forbidden, so if X particles are created, they must be created
by thermal production in the reheated universe. (This is why our comments in
section 4.5 about the possibility in other GUTs of baryon asymmetry arising at
a scale well below MG are pertinent.) So the next question is: What is the
abundance of the out-of-equilibrium X particles thus created? It is beyond our
scope to discuss here the calculation of the reheating temperature, the abundance,
and other questions which arise, in any detail. The interested reader is referred
to [31] and references therein. We shall content ourselves with noting the
conclusions which have been reached from these studies. A mechanism called
‘parametric resonance’, deriving from nonlinear quantum effects, leads to a
phenomenon called ‘preheating’ during which copious production of X particles
occurs even though these are heavier than the inflaton. It appears that the out-
of-equilibrium scenario, upon which our analysis was predicated, arises naturally
and that the right amount of baryon asymmetry is produced for a very wide range
of decay widths of the X particles.

Notwithstanding this highly welcome outcome, one is naturally led to
wonder whether the observed baryon asymmetry might not have a different origin.
Although, as we have noted, there is evidence of (supersymmetric) unification of
coupling strengths, this does not necessarily entail the existence of a GUT. It is
quite conceivable, in the context of string theory for example, that there is no
GUT. If so, the observed baryon asymmetry must have a different origin. This is
the topic to which we now turn.

4.7 Baryon-number non-conservation in the Standard Model

It is easy to see that the standard model Lagrangian, having the local gauge
symmetry group SU(3)c×SU(2)L×U(1)Y , is also invariant under the (classical)
global U(1) transformations associated with the baryon number (B) and lepton
numbers (N�, � = e, µ, τ ) in which fermion fields ψ(x) transform as

ψ(x)→ eiBθψ(x) (4.120)

ψ(x)→ eiN�θψ(x). (4.121)

When θ is local, the first of these (4.120), for example, applied to the kinetic term
produces a change δS in the action

δS = −
∫

d4x (ψ̄γ µ Bψψ)∂µθ
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=
∫

d4x θ∂µ(ψ̄γ µBψψ) (4.122)

where Bψ is the baryon number of ψ . Since the remainder of the Lagrangian
density is invariant under the (global and therefore the local) transformation, the
(Noether) current

j (B)
µ ≡

∑
ψ

ψ̄γµBψψ (4.123)

associated with baryon number, is divergenceless

∂µ j (B)
µ = 0 (4.124)

and B is conserved at every order of perturbation theory. Similarly, for the lepton
currents,

j (L�)
µ ≡

∑
ψ

ψ̄γµL�ψψ (4.125)

However, classical symmetries such as these are generally not preserved at the
quantum level [32–34]. In particular, in a chiral theory, in which the left- and
right-chiral fermion states are coupled differently, as occurs in electroweak theory,
there are chiral anomalies resulting from the non-invariance of the field measure
�ψ�ψ̄ in the functional integral determining the generating function [34]. This
non-invariance is equivalent to a further change δS′ in the action

δS′ = 1

32π2

∫
d4x θ(x)[tr[{F (L)

µν , F̃µν(L)}B] − tr[{F (R)
µν , F̃µν(R)}B]] (4.126)

where F (L)
µν ≡ ta Fa(L)

µν is the gauge field strength coupled to the left-chiral
component ψL ≡ 1

2 (1 − γ5)ψ of ψ; ta is the generally matrix-valued coupling
of the representation of the gauge group to which the left-chiral component ψL

of the fermion belongs, F̃ (L)
µν ≡ 1

2εµνρσ Fρσ(L) is the dual field strength and {, }
denotes anticommutator. The trace is over all fermions ψ . Similarly for F (R)

µν .
Thus, combining this with (4.122), we see that quantum effects require that

∂µ j (B)
µ = − 1

32π2
tr[{F (L)

µν , F̃µν(L)}B − {F (R)
µν , F̃µν(R)}B]. (4.127)

For the standard model, we note that there is no contribution to the divergence
from the SU(3)c group, because, for each quark flavour,

F (L)
µν = F (R)

µν . (4.128)

The left-chiral quark states QL of the first generation are coupled both to the
SU(2)L field strength W a

µν (a = 1, 2, 3) with ta = g2
1
2τ a (τ a are the 2× 2 Pauli

matrices) and to the U(1)Y field strength Bµν with strength g1YL = g1
1
6 . The
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right-chiral quark fields u R, dR are coupled only to Bµν with strength g1YR =
g1

2
3 , g1

−1
3 respectively. Thus the baryon number current

j (B)
µ ≡ 1

3

∑
q

q̄γµq (4.129)

satisfies

∂µ j (B)
µ = − NG

32π2
[g2

2W a
µνW̃ aµν − g2

1 Bµν B̃µν] (4.130)

where NG = 3 is the number of fermion generations. (It is important to remember
that each quark flavour q occurs in three colours.) The meaning of this important
equation is that the quantum average, the expectation value, of the divergence is
equal to the expression on the right-hand side in a fixed background field given
by the gauge fields W a

µ(x) and Bµ(x) [35].
In the same way, it is easily seen that the lepton number currents

j (L�)
µ ≡ ν̄�γµν� + �̄γµ� (� = e, µ, τ ) (4.131)

satisfy

∂µ j (L�)
µ = 1

NG
∂µ j (B)

µ (4.132)

and it follows that (1/NG )B− L� is conserved for each �. Also, defining the total
lepton number

L ≡
∑

�

L� (4.133)

we see that B − L is conserved, even though neither B nor L is.
Both of the field-strength factors on the right-hand side of (4.130) are

expressible as total divergences:

Bµν B̃µν = ∂µkµ (4.134)

where
kµ = εµνρσ Bνρ Bσ (4.135)

and
W a

µν W̃ aµν = ∂µK µ (4.136)

where

K µ = εµνρσ [W a
νρW a

σ + 1
3 g2ε

abcW a
ν W b

ρ W c
σ ]

= 2εµνρσ tr[WνρWσ − i 2
3 g2WνWρ Wσ ]. (4.137)

Note that, although the divergences ∂µkµ and ∂µK µ are gauge invariant, the
individual currents are not. In the first instance, let us consider the (classical)
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background vacuum fields in the SU(2)L ×U(1)Y theory. The standard solution
is to take all fields to be zero except for the Higgs doublet for which

φvac = 1√
2

(
0
v

)
≡ φ0 (4.138)

where v is constant. Both K µ and kµ are then zero, of course. Because of the
SU(2)L ×U(1)Y gauge invariance of the Lagrangian, we could as well choose a
gauge transformation of this solution. Then,

φvac(x) = U(x)U1(x)φ0 (4.139)

where U1(x) is a general element of U(1)Y and U(x) is likewise a general element
of SU(2)L , so we may write

U(x) = a(x)I2 + iτ · b(x) (4.140)

with
det U(x) = a(x)2 + b(x) · b(x) = 1. (4.141)

Thus, U(x) can be regarded as a mapping from spacetime into the three-sphere
(S3) which is the group space of SU(2). In this gauge, the U(1) vector potential
is non-zero:

Bvac
µ = i

g1
(∂µU1)U

−1
1 (4.142)

but, of course, the (gauge-invariant) field strength Bvac
µν is still zero and kµ remains

zero:
kvac
µ = 0. (4.143)

Similarly, in this gauge, the SU(2) gauge field becomes

W vac
µ = i

g2
(∂µU)U−1 ≡ 1

2
τ ·Wµ (4.144)

and, with the parametrization (4.140), this gives

Wvac
µ = − 2

g2
(a∂µb− b∂µa + ∂µb× b) (4.145)

For future reference, we note that, using (4.141),

Wvac
µ ·Wvac

ν = 4

g2
2

[(∂µa)(∂νa)+ (∂µb) · (∂ν b)]

≡ 4

g2
2

γµν (4.146)

where γµν is the metric on S3 for the spacetime coordinates. The vacuum state
described by (4.144) may be taken to be time-independent and such that U → I2
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as |x| → ∞. Then U effectively maps the S3 of real space, obtained by
identifying points at infinity, into the S3 which is the SU(2) group space [36].
Such mappings are characterized by their homotopy class. Since

π3(S3) = Z , (4.147)

where Z is the group of integers, any such mapping is associated with an integer
which counts the number of times the spacetime S3 is wrapped around the (unit)
S3 of the internal SU(2) space.

Now, the field strength W vac
µν constructed from W vac

µ is zero but the current
K µ (4.137) is no longer zero:

K µvac = −4ig2

3
εµνρσ tr[W vac

ν W vac
ρ W vac

σ ]. (4.148)

So

K 0vac = g2

3
ε0i j kεabc(W avac

i W bvac
j W cvac

k )

= − 2g2 det W vac. (4.149)

Also
det W vac = √det G (4.150)

where

Gij = Wvac
i ·Wvac

j = 4

g2
2

γi j (4.151)

and γi j is the metric (4.146) on S3 for the spatial coordinates. Thus, if we define

K ≡
∫

d3x K 0vac (4.152)

we have that

K = − 16

g2
2

∫
d3x

√
det γ

= − 16

g2
2

∫
S3

dV

= − 32π2

g2
2

n (4.153)

where n is an integer which counts the number of wrappings of the internal S3

provided by the mapping U ; the volume of the unit S3 is 2π2. For a general
(non-vacuum) field configuration,

K = 32π2

g2
2

NC S (4.154)
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where NC S is the Chern–Simons number. It derives from the existence of a 3-
form K(3) which arises because the 4-form tr(W(2) ∧ W(2)) is exact; W(2) ≡
Wµν dxµ ∧ dxν is the field strength 2-form. Thus, in our (vacuum) case, NC S

is just (minus) the winding number n.
Evidently electroweak theory, unlike QED, has an infinity of topologically

distinct vacua, which may be labelled with their Chern–Simons number. These
vacua are not physically distinct [36]: they are gauge transformations of each
other, as we have emphasized. Now consider the total baryon number

B ≡
∫

d3x j0(B) (4.155)

and let the gauge and Higgs fields be general and have time dependence. Then
the baryon number B will also be time-dependent. In a time interval (ti , t f ), the
change is

�B =
∫ t f

ti
dt ∂0 B =

∫
d4x ∂µ jµ(B) (4.156)

assuming that j (B) vanishes at spatial infinity. Note that using (4.130) this is
gauge invariant. Using (4.134),(4.136) and (4.143), we see that

�B = − NG g2
2

32π2

∫
d4x ∂µK µ

= − NG g2
2

32π2 �K . (4.157)

Now suppose that in this time interval the gauge and Higgs fields traverse a
non-contractible loop in the field configuration space, starting and finishing in a
vacuum configuration. Then the change �K is given just by the vacuum formula
(4.153), which gives

�B = −NG�n = NG�NC S . (4.158)

In other words, in the standard model, baryon-number non-conservation arises
in integer multiples of NG whenever the initial and final vacuum states are
topologically distinct.

It is instructive to consider what is happening using Dirac’s picture of the
vacuum as the state with all negative-energy fermion levels filled [37]. We start
(at ti ) and finish (at t f ) in this state. In the presence of non-zero field strengths
and Higgs fields, we expect the energy levels to be displaced at intermediate
times. In the (trivial) case of QED, for example, although the levels are perturbed
from their values at ti , they each return to their original level at t f , because the
electromagnetic field interacts with the left- and right-chiral fermion components
with equal strength. However, the baryogenesis with which we are concerned
derives from the chiral nature of electroweak theory: only left-chiral fermions
interact with the SU (2) gauge bosons. Depending on the field configurations, this

Copyright © 2004 IOP Publishing Ltd



120 Baryogenesis

E

t
ti tf

Figure 4.8. Fermion energy-level crossing in electroweak theory.

chiral property allows the energy levels of all of the (infinite number of) negative
energy states to be raised by one (or more) level such that at t f all of the negative
energy levels remain occupied. In the process, one (or more) of the positive energy
levels is occupied and we see one (or more) fermions produced. (See figure 4.8.)

Of course, if just one fermion is produced, angular momentum is not
conserved, and, in fact, electroweak theory with just one doublet is inconsistent:
it has a chiral anomaly. In the realistic case, each generation has four doublets:
three (colours of) quark doublet and one lepton doublet. Thus, with nG = 3,
there are 12 doublets in all and with the minimum of just one level crossing, 12
fermions are created, nine quarks and three leptons. An allowed process, which
has total charge zero, so charge is conserved but has baryon number 3 and each
lepton number 1, so that N� − 1

3 B is conserved might create from the vacuum

uudeuddνµuddντ (4.159)

or, equivalently,
pn → n̄e+ν̄µν̄τ . (4.160)

4.8 Sphaleron-induced baryogenesis

At intermediate times between ti and t f , there are non-vacuum field
configurations, which necessarily have higher energy associated with them. The
situation is, therefore, analogous to a particle moving in a one-dimensional
periodic potential V (x), in which a potential barrier separates adjacent minima. If
the particle has energy E less than the barrier height, classically it remains trapped
in one of the valleys of the potential, oscillating between the turning points where
the total energy E = V (x). However, quantum mechanically there is a non-zero
probability of penetrating the barrier. In the semi-classical approximation, the
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amplitude for transmission is given by the WKB formula in which the amplitude
is suppressed by an exponential factor

T = exp

(
−
∫ x1

x0

p dx

)
(4.161)

where p(x) = √
2m[V (x)− E] and the limits of integration x0 and x1 are the

two points at which the kinetic energy of the classical particle is zero, so that
V (x0) = E = V (x1). It is convenient to choose the zero of energy such that
E = 0. Suppose that x0 is a minimum of V (x), so that we are considering the
probability of a particle in classical equilibrium tunnelling through the potential
barrier. In several dimensions, (minus) the exponent in (4.161) generalizes [38]
to

b ≡
∫ x1

x0

ds
√

2mV (x) (4.162)

(where ds2 = dx · dx) and the integral is to be evaluated along the path for which
b is a minimum. The required path x(τ ), therefore, satisfies

m
d2x
dτ 2 = ∇V (4.163)

with
1

2
m

dx
dτ
· dx

dτ
− V (x) = 0. (4.164)

Equation (4.163) is just the Euler–Lagrange equation for the imaginary-(or
Euclidean-)time version of Hamilton’s principle, in which the formal substitution
τ = i t is made. In other words, it minimizes the Euclidean action

SE =
∫

dτ L E (4.165)

where

L E ≡ 1

2
m

dx
dτ
· dx

dτ
+ V (x). (4.166)

Equivalently, it describes the motion of a particle in time τ moving in the inverted
potential −V (x). It is clear then that the classical equilibrium point x0 can only
be reached asymptotically, as τ →−∞

lim
τ→−∞ x = x0. (4.167)

We can choose the time at which the particle reaches x1, where dx/dτ = 0 next,
to be τ = 0. Then the exponent b may be written as

b =
∫ x1

x0

ds
√

2mV (x) =
∫ 0

−∞
dτ L E . (4.168)
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For positive τ , the motion is just the reverse of the motion for negative τ , so that

b = 1
2

∫ ∞

−∞
dτ L E = 1

2 SE . (4.169)

Thus, the quantum-mechanical transition rate � at which the particle tunnels
through the potential barrier is exponentially suppressed as [39, 40]

� ∝ e−SE . (4.170)

In a quantum field theory, to find the transition rate between adjacent vacua
we need a field configuration which interpolates between them in Euclidean
spacetime, as in section 2.9. We can get a feel for what is involved using an
observation made by Belavin et al [41] and ’t Hooft [42]. For a Euclidean
spacetime, ∫

d4x (W a
µν − W̃ a

µν)
2 ≥ 0. (4.171)

So, ignoring the Higgs contribution, the action is

SE = 1
4

∫
d4x W a

µν W
a
µν = 1

4

∫
d4x W̃ a

µν W̃ a
µν

≥ 1
4

∫
d4x W a

µνW̃ a
µν

= 1
4

∫
d4x ∂µK µ

= 8π2

g2
2

�NC S  (4.172)

where we have used (4.136) and (4.154). So a gauge field configuration which
interpolates between vacua with �NC S = 1 will have Euclidean action

SE (1) ≥ 
2π

α2
. (4.173)

Already we can see that the tunnelling probability is likely to be incredibly small,
since

exp[−SE (1)] ∼ 10−80 (4.174)

using
α−1

2 � α−1
em sin2 θW � 30 (4.175)

as suggested by current data. Of course, (at zero temperature) in a pure Yang–
Mills theory, such as this, nothing sets the overall scale, so we may not yet write
down the tunnelling rate per unit volume. To do this, we need to consider the
spontaneously broken theory.

A related problem is to determine the energy scale of the potential barrier
separating adjacent minima. The schematic diagram in figure 4.9 suggests that
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Figure 4.9. Schematic picture of the dependence of the static energy of the gauge-Higgs
system upon the field configuration [A, φ]. The minima are topologically distinct vacua,
labelled by the integer-valued Chern–Simons numbers. The maxima, on this slice, are
unstable sphaleron configurations.

the barrier height will be the energy associated with a field configuration having
Chern–Simons number NC S = 1

2 . (Remember that NC S is only integral in a
vacuum field configuration.) Manton [36] and Klinkhamer and Manton [43]
constructed just such an object. They assumed a static, spherically symmetric
ansatz in which the Higgs field

φ(r) = h(mW r)U(r)φ0 (4.176)

with

φ0 = 1√
2

(
0
v

)
(4.177)

as before, mW = 1
2 g2v and

Wi = i

g2
f (mW r)(∂iU)U−1 (4.178)

where U has the form (4.140)

U = 1

r
[z I2 + iyτ1 + ixτ2] (4.179)

and
r = |r| = (x2 + y2 + z2)

1/2
. (4.180)

h and f are functions to be determined. The energy of the field configuration is
given by

E =
∫

d3x [ 1
2 tr(Wij Wij )+ 1

4 Bij Bi j + (Diφ)†(Diφ)+ V (φ)] (4.181)
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where Wµν, Bµν are the usual field strengths, Diφ is the gauge covariant
derivative

Diφ = ∂iφ + ig2Wiφ + i 1
2 g1 Biφ (4.182)

and
V (φ) = λ(φ†φ − 1

2v2)2. (4.183)

In the first instance, the U(1) fields are ignored, i.e. θW = 0. Substituting the
ansatz gives the energy in the form

E = 2mW

α2

∫ ∞

0
dξ F

(
ξ,  f, f ′, h, h′; m H

mW

)
(4.184)

where ξ = mW r , so that  f and h are functions of ξ alone, and m2
H = 2λv2 is the

Higgs mass. The Euler–Lagrange equations which follow from requiring E to be
minimized may be solved approximately or numerically, with f and h required
to approach zero as ξ → ∞. Substituting the solutions back into E gives the
minimum energy in the form

Emin = 
2mW

α2
�

(
m H

mW

)
. (4.185)

The scale is set by the prefactor

2mW

α2
� 5 TeV (4.186)

and the function � is rather slowly varying: it increases only from 1.5 to 2.7 as
m H increases from zero to infinity, taking the value 2.1 when m H = 2.8mW . In
the range 25 GeV < m H < 250 GeV, � is well approximated by

�(x) = 1.58+ 0.32x − 0.05x2. (4.187)

Allowing θW 
= 0 changes Emin by about 100 GeV.
Although the configuration has the minimum energy among those satisfying

the ansatz, it is nevertheless unstable against perturbations which do not satisfy
the ansatz. This was to be expected too from the schematic diagram in figure 4.9,
in which the top of the potential barrier is evidently a maximum. Because of this
instability, the configuration was named a ‘sphaleron’, from the Greek meaning
‘ready to fall’. The energy of the sphaleron satisfies

8 TeV < Esph < 14 TeV (4.188)

and measures the height of the saddle point in configuration space over which
the vacuum must be ‘pushed’ to reach a topologically distinct vacuum. This
suggests that the exponentially small tunnelling rate (4.174) might be evaded by
supplying O(10 TeV) of energy, for example in a pn collision. Then some baryon
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number non-conserving transition, such as (4.160), might be observed. Such
energies will soon be available at the LHC. However, it is not just the potential
barrier which has to be surmounted. The energy scale (4.188) suggests that about
30 weak gauge bosons must be created and assembled into the highly coherent
sphaleron configuration, so that the process is highly suppressed by phase-space
considerations unless the energy is considerably in excess of the sphaleron mass.

The other possibility, and the one which is of primary concern to us, is that,
at temperatures kB T ∼ Esph, thermal effects might give baryon number non-
conservation at an appreciable rate. To calculate the thermal transition rate we
must remember that the effective potential becomes temperature dependent [44]
and, in consequence, so does the the Higgs field expectation value v(T ) and,
hence, the W-boson mass mW (T ). In fact, using (2.55), since λ in (2.93) is 1

4 that
in (2.42),

mW (T ) = 1

2
gv(T ) = mW

 CT

2
√

λ|m| +
(

1− T 2

T1
2

)1/2
 (4.189)

where
|m| = √λv = m H√

2
(4.190)

at tree level,

C = 3e3(1+ 2cos3θW )

4πsin32θW
(4.191)

in electroweak theory and, from (2.54),

T1 = T0

(
1+ C2T 2

0

4λm2

)−1/2

(4.192)

with T0 given by (2.95)

T0 = |m|
[

λ

2
+ e2(1+ 2cos2θW )

4sin22θW
+ h2

t

4

]−1/2

. (4.193)

The measured values of the parameters give

133 GeV � T0 � 360 GeV (4.194)

with the lower bound deriving from the current lower bound [7]

m H � 114.3 GeV at 95% CL (4.195)

on the Higgs mass. Then

T1 − T0

T0
� 2.3× 10−3 (4.196)
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with the upper bound saturated when m H achieves its lower bound. The
temperature-dependent sphaleron energy satisfies

Esph(T ) = 2mW (T )

α2
� (4.197)

with
1.9 < � < 2.7 (4.198)

and the associated Boltzmann factor exp[−Esph(T )/T ] means that the baryon-
number non-conservation is unsuppressed when

T > Esph(T ). (4.199)

However, this is satisfied only when T is practically at the critical temperature at
which the energy barrier disappears in any case. Careful analytical estimates of
the baryon-number changing rates, valid in the range

2mW (T )� T � 2mW (T )

α2
(4.200)

have been made by Arnold and McLerran [45]. They find a transition rate per unit
volume

�sph

V
= κ(2mW (T ))4

(
2mW (T )

α2T

)3

e−Esph(T )/T (4.201)

where the numerical factor κ ∼ 11, although a (non-perturbative) numerical
‘measurement’ of the diffusion rate of the Chern–Simons number over the barrier
[46] suggests that this may be too large by a factor of order 10.

At high temperatures where T > T1, the Higgs field VEV v(T ) is zero
and there is no sphaleron. The gauge fields, however, can still generate baryon-
number non-conservation. The energy Eb of such a configuration is controlled by
the a priori length scale � of the configuration which changes the Chern–Simons
number NC S . Presumably the scale of the action is set by (4.173), so

Eb� ∼ 2π

α2
. (4.202)

To avoid Boltzmann suppression, we require

Eb ∼ 2π

α2�
< T (4.203)

so

� �
2π

α2T
. (4.204)

Thus, the transition rate per unit volume is

�b

V
∼ 1

�3t
∼

(
α2T

2π

)4

(4.205)
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if we assume � ∼ t . However, the scale (4.204) is also the scale at which
perturbation theory breaks down in a hot plasma and it has been argued [47] that
plasma damping effects increase the time scale, so that

t ∼ �

α2
(4.206)

basically because there are fewer ways large field configurations can cross the
barrier than smaller ones. This means that

�b

V
∼ α2

(
α2T

2π

)4

(4.207)

and indeed a lattice simulation [48] gives

�b

V
= (29± 6)α5

2 T 4. (4.208)

Numerically there is no difference between the two expressions.
At any rate, it is clear that there is no Boltzmann suppression at high

temperatures, so we do have a source of baryon-number non-conservation.
Whether or not it can explain the observed baryon asymmetry of the universe,
of course, depends upon the other two Sakharov criteria: the amount of CP-
violation and whether the system is out of thermal equlibrium. The picture we
have in mind is that, in some region of space, there is a non-trivial gauge and
Higgs field configuration, of the type we have discussed, which leads to the non-
conservation of baryon number. To generate a baryon asymmetry we require CP-
violating interactions involving the quark fields. Then the transition rate for the
sphaleron-induced process with �NC S = +1 will differ (slightly) from that with
�NC S = −1. Provided that the system is not in thermal equilibrium, there is then
the possibility of a net non-zero baryon-number asymmetry.

4.9 CP-violation in electroweak theory

In electroweak theory the sole source of CP-violation is via the Cabibbo–
Kobayashi–Maskawa (CKM) matrix, which derives a CP-violating phase from the
unremovable phases in the Yukawa interactions of the quarks when we transform
to the mass eigenstates. The form of these interactions is

�Y = φ†d̄Rh D QL + ψ†ū RhU QL + h.c. (4.209)

where QL is the quark doublet and u R, dR the singlets, φ is the Higgs scalar
doublet and ψ = iτ2φ

∗. As in equation (4.70), hU and h D are complex matrices
acting on the undisplayed generation indices of QL , u R, dR . Also, as in equation
(4.78), we need to construct a diagram with non-vanishing imaginary parts in both
the loop integral and the trace over generation indices. It is easy to see that (4.81)
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does not derive from a diagram allowed by the vertices in (4.209). In fact, the first
contribution arises at the 12th order in perturbation theory, from the trace

T12 ≡ tr(h†
U hU h†

U hU h†
Dh Dh†

Dh Dh†
U hU h†

Dh D)+ h.c. (4.210)

Again we may diagonalize hU and h D as in (4.82), (4.83), (4.84) and (4.85).
Then [49, 50],

T12 = g12
2

64m12
W

tr(|mU |4V |m D|4V †|mU |2V |m D|2V †) (4.211)

where
V = QS† (4.212)

is the CKM matrix and

|mU |4 = diag(m4
t , m4

c, m4
u) (4.213)

and similarly for |m D|4, |mU |2 and |m D|2. Then

Im T12 = g12
2

64m12
W

∑
i, j,k,l

(m4
U )i (m

4
D) j (m

2
U )k(m

2
D)l Im[Vij Vkl V

∗
il V ∗kj ]. (4.214)

Now
Im[Vij Vkl V

∗
il V ∗kj ] = J

∑
p,q

εikpε j lq (4.215)

where J is the Jarlskog invariant [49]. In the standard CKM and Particle Data
Group parametrizations respectively, it is given by

J = sin2θ1 sin θ2 sin θ3 cos θ1 cos θ2 cos θ3 sin δ

= sinθ12 sin θ13 sin θ23 cos θ12 cos θ2
13 cos θ23 sin δ13. (4.216)

Then

Im T12 = g12
2

64m12
W

J (m2
t − m2

c)(m
2
c − m2

u)(m2
u − m2

t )(m
2
b − m2

s )

× (m2
s − m2

d)(m2
d − m2

b)

� g12
2

64m12
W

Jm4
t m4

bm2
cm2

s . (4.217)

So we expect the scale of CP-violation in the standard model to be controlled by
the parameter

δsm � A
( α2

2π

)6
J

(
m2

t m2
bmcms

m6
W

)2

. (4.218)
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With A ∼ 103 perhaps to allow for the large numberof Feynman diagrams, we
still have

δsm � 10−25 (4.219)

using the current data [7]. This tiny number scales the difference in free energies
and, hence, the difference between the rates of the �NC S = ±1 processes.
By itself, it is sufficient to exclude the possibility of explaining the observed
baryon number asymmetry of the universe in the context of the standard model
electroweak theory, so extra sources of CP-violation are clearly needed. Such
sources arise naturally in the supersymmetric version of the theory which we
shall discuss shortly. Before doing so, however, we shall see that there are further
reasons why the standard model electroweak theory cannot yield the measured
asymmetry.

4.10 Phase transitions and electroweak baryogenesis

We have seen that electroweak theory possesses (sphaleron-induced) baryon-
number non-conserving processes, as well as CP-violation via the CKM matrix.
However, there is a rather general argument that these cannot generate the baryon
asymmetry of the universe in the absence of a phase transition or if the phase
transition is second order [51].

Suppose the latter and consider the universe at temperature T satisfying

mW < T < Tc (4.220)

with Tc the critical temperature of the phase transition. For a second-order phase
transition

mW (T ) = mW

(
1− T 2

T 2
c

)1/2

. (4.221)

We can see this from (4.189) by setting C to zero. Then v(T ) and, hence, mW (T ),
approach zero continuously as T approaches Tc from below; also, when C = 0,
T0 = T1 = Tc. As in the case of GUT baryogenesis (4.37), we now require
that the rate �sph of baryon-number non-conserving processes is smaller than the
(Hubble) rate H (T ) associated with the expansion of the universe, so that the
baryons are decoupled from the thermal bath. The total sphaleron rate �sph is
obtained by scaling the rate per unit volume �sph/V , given in (4.201), with R3(t),
where R(t) is the scale factor, proportional to T−1 in the radiation-dominated era.
Thus, roughly,

�sph ∼ kT exp

[
− Esph(T )

T

]
(4.222)

where Esph(T ) is given in (4.197). With H (T ) given by (4.21), decoupling only
happens when the temperature T drops below T ∗ with

T ∗

Tc
�

[
1+

(
Tc

mW

α2

2�
ln

m P

T ∗

)2
]−1/2

. (4.223)
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This gives

0.71 <
T ∗

Tc
< 0.88 (4.224)

corresponding to the bounds (4.194). Thus the sphaleron-induced baryon-number
non-conserving processes with which we are concerned are not decoupled until
the temperature is well below Tc but still well above mW [51] and, at these
temperatures, the exponential suppression essentially turns off the baryon-number
production. At the higher temperatures where the Boltzmann suppression is
evaded, the rate exceeds the universal expansion rate and the resulting thermal
equilibrium washes out any baryon asymmetry. So the picture we have is as
follows: As the temperature drops below Tc, the symmetry breaks and the field
φ develops a non-zero VEV at the minimum of the potential, as in figure 2.1.
At each point in space thermal fluctuations perturb the field φ which then ‘rolls’
classically to the new value at the global minimum. If this phase transition is
second order or a continuous crossover, the slow rolling to the new minimum
means that the departure from thermal equilibrium is too small until T drops
below T ∗ but by then the sphaleron-induced baryon production has been turned
off by the Boltzmann exponential suppression.

Thus, the only possibility is that the phase transition is first order. In this
case, as discussed in section 2.9, for temperatures T > T1, the only minimum
of Veff is with the system in the symmetric, unbroken phase characterized by
zero VEV. As the temperature falls below T1, a local minimum of Veff develops,
separated by a potential barrier from that at zero VEV, and below the critical
temperature (T < Tc) this broken phase becomes the global minimum, see
figure 2.2. Nucleation of the broken phase proceeds by the formation of bubbles
of this true vacuum in the sea of false (symmetric phase) vacuum. At some
supercooled temperature below Tc, the size of the bubbles becomes large enough
for them to overcome the surface tension effects and they expand to fill the whole
of space and complete the phase transition. Finally, for temperatures below T0,
the local minimum at zero VEV disappears and only the broken phase is stable.

A baryon asymmetry may be generated as the wall of an expanding bubble
passes through a region containing particles in the unbroken phase. The Higgs
field changes rapidly because of the wall motion, as do other fields, and these
interact with the particles giving concentrations quite far from equilibrium. If the
baryon-number non-conserving processes and the CP-violating processes both
occur in or near the wall, a net non-zero baryon asymmetry can result: this
scenario is called local baryogenesis [52, 53]. After the wall has passed the
region we are discussing is in the true (broken phase) vacuum with v(T ) 
= 0,
so it is important that, in this phase, the sphaleron-induced, baryon-number non-
conserving processes are turned off by the Boltzmann suppression, so that any
baryon asymmetry produced during the non-equilibrium era is frozen in. The
condition for this to happen is [50]

v(Tc)

T
� 1. (4.225)
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This is called the ‘sphaleron washout condition’. In non-local baryogenesis, CP-
violating interactions of the particles with the bubble wall produce an asymmetry
in a quantum number other than the baryon number and the resulting particles
carry this asymmetry into the unbroken phase, away from the wall. Then baryon-
number non-conserving effects convert this asymmetry into a baryon asymmetry,
(some of) which is frozen in the broken phase after the bubble wall has passed.
If the speed of the wall is greater than the sound speed in the plasma, the former
process dominates [54]; otherwise the latter does but, in general, both may occur
and the total baryon asymmetry is the sum of that generated by the two processes.

We have already noted that the phase transition is (weakly) first order in
electroweak theory and that at the phase transition (2.61) gives

φc = v(Tc) = 2CTc

3λ
(4.226)

so
v(Tc)

Tc
= 2C

3λ
� 0.17 (4.227)

which does not satisfy (4.225). In fact, requiring that (4.225) is satisfied would
require

m H � 47 GeV (4.228)

in clear contradiction to the current lower bound (4.195).
The perturbative calculations of the corrections to the effective potential are

not a priori reliable, because of the so called ‘infrared problem’ that afflicts finite-
temperature field theory [55, 56]. It derives from the existence of an expansion
parameter of the form

ε = g2
2

e−m/T − 1
� g2

2 T

m
when m � T (4.229)

where m is some bosonic mass appearing in the propagators. Then light modes,
those with m � g2

2T , interacting with the Higgs are a problem that should be
treated non-perturbatively. The direct method of carrying out a four-dimensional
finite temperature lattice simulation is difficult because the weak coupling entails
the existence of multiple length scales which are difficult to fit simultaneously on
a finite lattice. Also, in practice, chiral fermions cannot be handled efficiently.
However, all of these problems can be overcome by using a finite-temperature
effective field theory [57–59], obtained by integrating out (perturbatively) all non-
zero Matsubara modes, which includes, in particular, all fermions. The resulting
effective theory is then three-dimensional and involves only the surviving infrared
modes, the Higgs and the spatial components of the SU (2) and U (1) gauge fields.
This theory is ideally suited for lattice simulations. It is found that, in the m H –
Tc plane, there is a line of first-order phase transitions that end at a critical point
after which there is only a crossover transition. The endpoint is known to high
precision and is at

m H,c = 72.3 GeV Tc = 109.2 GeV. (4.230)
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Further, the condition (4.225) is satisfied only for

m H � 10 GeV. (4.231)

Thus, the more accurate calculation of the phase transition shows that the
current bound (4.195) is far from allowing a first-order phase transition, let alone
baryogenesis.

This analysis also indicates how the situation might be improved. The
strength of the phase transition, as measured by v(Tc)/Tc, can be increased by
substantially decreasing the effective (three-dimensional) scalar self-coupling λ3,
as is suggested by (4.227). This requires a new, non-perturbative degree of
freedom and this happens when there are extra scalar degrees of freedom, as
occurs naturally in the supersymmetric version of electroweak theory to which
we now turn.

In summary, the standard model electroweak theory does not explain the
observed baryon asymmetry for two reasons: (i) because there is insufficient CP-
violation; and (ii) because the phase transition is too weakly first order (in the
sense described earlier) to suppress the erasure of any baryon number asymmetry
produced in the symmetric phase.

4.11 Supersymmetric electroweak baryogenesis

We have already noted that the extra matter contained in the minimal
supersymmetric standard model (MSSM) might allow the alleviation of
the problematic features of the non-supersymmetric theory that preclude
baryogenesis at the level observed in nature. Supersymmetry entails the existence
of new fermions. In particular, there are charginos and neutralinos, mass
eigenstates that are generically superpositions of the charged or neutral weak
gauginos and Higgsinos. There are also new bosons and we shall be specifically
concerned with top squarks. Diagonalization of the mass matrices of all of these
states generally leads to new sources of CP-violation. As we shall see, it is the
existence of new particles (and thereby of new sources of CP-violation), rather
than the supersymmetry itself, that might allow the MSSM to explain the observed
baryon asymmetry.

Now consider an expanding bubble of the broken phase, with the bubble
wall propagating through the hot plasma into the symmetric phase, perturbing
the (quasi-)particle distributions from equilibrium. Inside the bubble, baryon-
number non-conservation is small, because of exponential suppression by the
sphaleron’s Boltzmann factor, provided that the sphaleron washout condition
(4.225) is satisfied. Effectively, baryon number is conserved inside the bubble.
However, outside the bubble, anomalous baryon-number non-conservation is
rapid. One way to see how baryogenesis occurs [60] is to think of the wall of
the expanding bubble feeling a ‘wind’ of particles in the symmetric phase. These
particles may pass through the wall into the broken phase or be reflected back
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into the symmetric phase region. The latter will interact and be slowed by other
particles approaching the wall, before eventually passing through the wall. Thus,
an accumulation of particles develops in front of the bubble wall. As a result of the
CP violation, there is a non-zero difference between the transmission coefficients
of these particles and their antiparticles across the wall of the bubble and a similar
difference between the reflection coefficients. These differences, in turn, generate
local source terms for the net number densities associated with the particles
and, in particular, the Higgs number and axial top number, which appear in the
coupled Boltzmann equations, tending to pull the system away from equilibrium.
These particles are chosen because they participate in particle-number-changing
transitions in the wall that are fast compared with relevant time scales but they
carry charges that are approximately conserved in the symmetric phase. Transport
effects then generate a local excess (or deficit) of left-chiral charginos (say) over
their antiparticles ahead of the advancing bubble wall. Unsuppressed baryon-
number non-conservation in the symmetric phase then converts these densities
into a net baryon asymmetry, which is frozen as the bubble wall sweeps through,
provided that the sphaleron washout condition is satisfied.

All calculations [60–64], of nB in the symmetric phase are done using
coupled diffusion equations for the relevant number densities, which include
contributions arising from source currents generated at the bubble wall, scattering
processes involving the top quark Yukawa coupling, as well as Higgs-number and
axial-top-number-violating processes in the bubble wall and broken phase. Higgs-
number and quark-number diffusion terms are also included. There is general
agreement on the equations to be used (see (4.232)) but little on how to determine
the source currents.

We have also noted that the MSSM affords new mechanisms for satisfying
the washout condition (4.225) that are unavailable to the standard model.
Specifically, the possible existence of a light SU(2) scalar top squark t̃R (a ‘stop’)
that interacts strongly with the Higgs field might drive the necessary reduction
in the effective three-dimensional scalar self-coupling λ3 needed to generate a
sufficiently strong first-order phase transition with a Higgs mass satisfying the
current bounds [65]. Any such scalar gives a negative contribution to λ3 at
one-loop level but a light left stop t̃L is inconsistent with electroweak precision
measurements. Numerical calculations [65] have confirmed two-loop estimates
and shown that these are even somewhat conservative. The conclusion is that there
are parts of the MSSM parameter space not excluded by experiment where the
electroweak phase transition is strong enough to allow baryogenesis. However,
besides needing a light stop mt̃R

� mt , there must either be a much heavier stop
mt̃L

� 10mt or else two independent light Higgs particles mh,A � 120 GeV. (h is
the scalar Higgs and A the pseudoscalar.)

The next question then is whether in this region of parameter space the
additional sources of CP-violation in the MSSM can generate source terms for
the various particle densities that are strong enough to induce sufficient baryon
asymmetry in the symmetric phase, which is then frozen in as the bubble wall
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passes through. The most direct method of baryogenesis would, of course, be to
use the left-chiral quarks themselves, since any CP-violating contributions to their
distributions would directly bias the sphaleron interactions and thereby generate
a baryon asymmetry. However, in the MSSM (but not in all two-Higgs doublet
models) the Higgs potential is real at tree level and CP-violating contributions
to quark masses arise only at one-loop order. Moreover, such contributions are
potentially suppressed by the GIM mechanism, as in the standard model. We are,
therefore, forced to consider CP-violating perturbations in other particle densities.
Specifically, we consider squarks, which couple to quarks strongly via the strong
supergauge interactions, and charginos, which couple strongly to third-generation
quarks via Yukawa interactions. Neutralinos also contribute but their coupling to
fermions is weaker than that of the charginos, so the transport of any asymmetry to
the quark sector is much less efficient and we neglect them. The coupled diffusion
equations that control the densities with CP-violating sources have the general
form

Diξ
′
i + vwξ

′
i + �i (ξi + ξ j + · · ·) = Si (4.232)

where ξi ≡ µi/T with µi the chemical potential of the i th species, Di is a
diffusion constant, vw is the velocity of the bubble wall, �i is the inelastic rate
converting species i into other species j, . . . , and Si is the CP-violating source
term created at the bubble wall; the prime denotes differentiation with respect
to the z-direction in which the bubble wall propagates. Different approaches
have been proposed for calculating the source terms [31, 63, 66], and it is unclear
whether they agree. We shall use the classical force method [63, 64, 67, 68], in
which the particles move in the plasma under the influence of a classical force
exerted on them by the spatially varying Higgs field. Because of CP-violation,
particles and antiparticles experience (slightly) different forces. The source terms
in the diffusion equations are proportional to the thermal average of this CP-
violating component of the force.

For illustrative purposes, we shall follow the treatment of Cline et al [69].
The set of coupled diffusion equations can be simplified considerably by taking
account of the hierarchy of inelastic reaction rates �i that change the particle
species i into other species j, . . . . The electroweak sphaleron rate �b, of order
α4

2 T (see (4.205)), is the slowest and can be ignored until we are ready to compute
the actual baryon asymmetry. In contrast, the various gauge interaction rates, of
order αa T , are fast and can be taken to be in equilibrium on the time scale for
particles to diffuse in front of the bubble wall:

αa T � Di

v2
w

. (4.233)

Then, in particular, the chemical potentials of the weak bosons are zero, so the
chemical potentials of quarks in the same doublet are equal:

ξtL = ξbL ≡ ξq3 . (4.234)
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Similarly, the assumption that supergauge interactions are in equilibrium implies
that

ξp = ξ p̃ (4.235)

for any particle p and associated sparticle p̃. Intermediate between these
interaction rates are those of various inelastic processes, including those
associated with the interaction Lagrangian and ‘strong sphaleron’ processes. We
shall see in the following chapter that, although baryon number is conserved by
QCD, the axial baryon-number current

J (5)
µ ≡

∑
q

q̄γµγ5q (4.236)

is anomalous and there are strong sphaleron solutions, analogous to the
electroweak sphalerons, that connect different topological sectors. Their
contribution to the coupled diffusion equations conveys the CP-violation to
all quark flavours. The rate �ss of such processes is of order α4

3 T and
comparable with those arising from the top Yukawa coupling, so they must be
included. Although neither of the foregoing assumptions is a particularly good
approximation, it is believed, or at least hoped, that they lead to multiplicative
errors of at most of order unity in the predicted baryon asymmetry.

In the analysis of [69], the sources Si of the CP-violating asymmetry arise
solely from the chargino sector. The squark sector is ineffective because, for
bosons, the CP-violating source arises only at second order in the gradient
expansion of the CP-violating mass. Charginos are mass eigenstates arising from
Higgsino–Wino mixing. However, any asymmetry from the Wino component
can only be transported to a chiral asymmetry in quarks and squarks via mixing
effects, whereas a Higgsino asymmetry is transported directly via strong Yukawa
interactions. Thus, the set of diffusion equations to be considered can be
simplified by neglecting chargino mixing and dropping any Wino contributions.
With the foregoing approximations, the number of coupled diffusion equations
is reduced to those for the two Higgsino densities ξh̃1

and ξh̃2
, which have CP-

violating sources Sh̃1
and Sh̃2

, plus those for the third quark generation doublet
ξq3 and the right-chiral top ξtR , and those for first- and second-generation doublets
ξq1,2 and right-chiral singlets ξqR , which are coupled to the first four equations
only by strong-sphaleron interactions. The equations may be solved numerically
and the last step is to calculate the baryon asymmetry induced by weak sphaleron
effects on the CP-violating asymmetries ξi .

Since the weak sphaleron derives entirely from the SU(2)L component of
the electroweak gauge group, the baryon asymmetry results from left-chiral quark
and lepton asymmetries in front of the bubble wall. The latter are essentially zero
in this approach and the former enter the baryon-number-violating rate equation

dnB

dt
= 3

2
�b

(
ξqL − A

nB

T 2

)
(4.237)
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via
ξqL ≡ 3(ξq1 + ξq2 + ξq3) (4.238)

because each doublet occurs in three colours. Here �b is the weak-sphaleron
baryon-number non-conserving rate (4.205) or (4.208). The second term on the
right-hand side is the Boltzmann term by which the baryon number would relax
to zero if the sphaleron processes had time to equilibriate in front of the bubble
wall. The nB here is, therefore, related to the quark and lepton asymmetries, µq

and µ�, that result from equilibriating all flavour-changing interactions that are
faster than the sphaleron rate �b in the symmetric phase. Thus, A is given by

A
nB

T 2
= 9µq +

∑
�

µ� (4.239)

since each sphaleron creates nine quarks and three leptons. All quarks have the
same chemical potential, because of efficient mixing, but lepton mixing might be
weak. The calculation of these chemical potentials depends on which interactions
equilibriate on the relevant timescale. The asymmetry n A for any particle species
a is given by

n A ≡ na − nā = κa
µa T 2

6
(4.240)

where κa = 1, 2, respectively, when a is a fermion or boson. In electroweak
baryogenesis, the relevant time scale is �−1

b and, on this scale, both chiralities of
all six quark flavours in three colours do equilibriate and we include a number
Nsq of light squarks. Thus, from the quarks and squarks, we have

nB = 1

3
(nQ + nS Q) = µq

18
[6× 3× 2+ 2× 3Nsq ]T 2 (4.241)

so that

µq = nB

2T 2

(
1+ Nsq

6

)−1

. (4.242)

Similarly, since only the left-chiral leptons equilibriate, but not the right,

n� = 1
3µ�T 2 (4.243)

and ∑
�

µ� = 3
∑

�

n�

T 2
= 3

nB

T 2
. (4.244)

Thus,

A = 9

2

(
1+ Nsq

6

)−1

+ 3. (4.245)

The solution of (4.237) is found by transforming to the wall frame in which
∂t →−vw∂z . Then

nB = 3�sph

2vw

∫ ∞

0
dz ξqL e−bz (4.246)
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where

b ≡ 3A�sph

2vwT 3 . (4.247)

Consequently, the quark asymmetry ξqL , found from solving the coupled diffusion
equations in terms of the Higgsino sources Sh̃1

(z) and Sh̃2
(z), determines the

baryon asymmetry nB and, hence, the baryon-to-photon and baryon-to-entropy
ratios ηB ≡ nB/nγ � 7nB/s.

The conclusion is that the MSSM can explain the observed value (4.18) but
several independent parameters must be optimally tuned to do so. First, the CP-
violating phase in the chargino mass matrix must be close to maximal. In order
to accommodate experimental data on electric dipole moments, especially that
of mercury, this requires that the lower generation squarks must have masses of
order 10 TeV. Actually this is necessary to maximize the chiral quark asymmetry.
Also mt̃L

∼ 10 TeV is required to give sufficiently large radiative corrections to
mh , given the already noted need for a light t̃R (mt̃R

� mt ) to satisfy the washout
condition. In addition, tan β ≡ vu/vd � 3 is required, the wall velocity vw must
be close to its optimal value of 0.02 and the walls should be as thin as they can be
for the validity of the classical force method, about 6/T . (vu,d are, respectively,
the VEVs of the (two) Higgs doublets h1 in (4.59), used to give masses to the
uplike quarks, and h2 in (4.60), used to give masses to the downlike quarks.)
Similar conclusions have been reached by Huber and Schmidt [70].

Although the MSSM can explain the observed baryon asymmetry, it is
evidently not generic. The region of parameter space in which it does so is
very constrained, and might well be excluded by future experiments that set
new bounds on sparticle masses, for example. We therefore comment briefly on
alternatives that have been proposed but which, however, have not been as fully
studied as the other methods we have described.

4.12 Affleck–Dine baryogenesis

The discussion of baryogenesis in the previous section made hardly any use
of the supersymmetry of the MSSM. Rather, the MSSM supplied new fields
that strengthened the first-order phase transition and which also developed the
chiral asymmetries that were subsequently converted to a baryon asymmetry.
In contrast, the Affleck–Dine mechanism [71] uses a generic feature of any
supersymmetric theory, namely the existence of ‘flat’ directions, to generate
a large VEV for a field carrying non-zero B − L in the early universe; at
temperatures higher than the electroweak phase transition, we have already
noted that weak sphaleron processes are in equilibrium, so that any B + L
asymmetry is erased. In fact, perturbative baryon-number conservation in the
MSSM is achieved by imposing a discrete R-symmetry that has the effect of
excluding certain dimension-four operators from the superpotential that would
otherwise explicitly generate baryon-number non-conservation, see [11] for
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example. Even so, there remains the possibility of dimension-five, and higher,
non-renormalizable operators, whose effects are suppressed by at least one
power of a (hopefully) superheavy scale M , e.g. the Planck mass m P . The
alternative approach to baryogenesis, proposed by Affleck–Dine utilizes both of
these features.

First, recall that in a supersymmetric theory there are scalar fields with
non-zero baryon or lepton number. Before supersymmetry breaking, there are
generally many (D- and F-) flat directions. These are directions (in field
configuration space) along which the potential is a constant (i.e. ‘flat’). These
include directions that allow gauge invariant combinations of squark and/or
slepton fields to develop non-zero VEVs. For example [72], the MSSM
superpotential (see [11])

W = λu QHuuc + λd QHddc + λe L Hdec (4.248)

has an F-flat direction parametrized by the complex field φ as follows:

Qα
1 =

(
φ

0

)
L1 =

(
0
φ

)
dα

2 = φ (4.249)

with all other fields zero; subscripts label the generations, and superscripts are
colour labels. The auxiliary F-terms (Fφ ≡ ∂W/∂�, as in section 2.7) of all
chiral superfields � vanish in this direction, and the fact that φ is complex shows
that there is global U(1) symmetry associated with it. This direction is also D-
flat. In other words, the D-terms (Da ≡ ∑

� �†ta�, as in section 2.7) for all
three gauge groups also vanish. It follows that the scalar potential

V = 1
2

∑
i

g2
i Da

i Da
i +

∑
�

F∗�F� (4.250)

is zero and, therefore, flat in this direction (the summed index a runs over the
adjoint representation of the corresponding group.) Thus, the scalar particle
associated with the field φ is massless. Fields such as this, associated with flat
directions, are called ‘moduli’ fields and the massless particles associated with
them raise cosmological questions that we shall discuss later. In our example, the
combination of non-zero fields associated with the flat direction

X = Qα
1 L1dc,α

2 (4.251)

is gauge invariant and has B − L = −1. In general, the gauge-invariant
combination X is proportional to a power of the field parametrizing the flat
direction:

X ∝ φm (4.252)

In our example, m = 3. As detailed later, various effects lift the flatness and may
allow φ to develop a VEV. If these VEVs are large, the subsequent evolution of
the universe can develop a substantial baryon asymmetry.
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To see how, recall that the superpotential W is expected to have higher-order,
non-renormalizable terms. These must be gauge and R-parity invariant. Thus,
focusing on a single flat direction, in general

Wnr = λ

nMn−3 X
k = λ

nMn−3 φ
n (4.253)

where n = mk; k is even if X has odd R-parity, as in the previous example, and M
is some large mass. This gives F-terms that are non-zero in the specifed direction.
Note, however, that although the superpotential Wnr does not conserve U(1)B−L ,
the scalar potential V derived from it does:

Vnr = |λ|2
M2n−6

|φ|2n−2 (4.254)

since it is proportional to (φ∗φ)kn−1.
We shall see later, in chapter 7, that there is good reason for believing that

in the early universe there was a period of ‘inflation’, during which the Hubble
constant H was approximately constant. The second, and most important, point
is that global supersymmetry is necessarily broken during inflation. Since the
vacuum energy

〈V 〉 = 3

8π
H 2m2

P (4.255)

is non-zero, there must be non-zero F and/or D components for some matter
fields, and a soft potential develops. This includes a mass term for the (erstwhile
massless) moduli field φ, of order H , the (instantaneous) Hubble constant [72].
In fact, H ∼ 1013−15 GeV during inflation, as can be seen from (7.41) with
V (φ) given by (7.115) in order to explain the observed cosmic microwave
background. A mass term too conserves B − L. The supersymmetry breaking
also induces (soft) A-terms in the scalar potential. These have the same form as
the superpotential W , so, in our example, they have the form

VA = A

Mn−3
φn + h.c. (4.256)

Like the mass term, the scale of A is of order the current Hubble constant H .
Note that such terms do not conserve B − L and this is the source of the (B− L)-
violation necessary to generate a net B − L in the evolution of the flat direction.
The Sakharov criteria, necessary for baryogenesis, also require CP-violation and
we shall see later that a CP-violating phase difference between this A-term and
that arising from the hidden-sector supersymmetry breaking is essential to getting
a non-zero baryon asymmetry at the end.

The equation of motion for the field φ is

φ̈ + 3H φ̇ + ∂V

∂φ∗
= 0 (4.257)
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where V is the potential obtained by combining the contributions from Vnr in
(4.254), VA in (4.256) and the mass term for φ. It has the form

V = −cH 2
I |φ|2 +

(
aλHI φ

n

nMn−3
+ h.c.

)
+ |λ|2 |φ|

2n−2

M2n−6
(4.258)

where HI is the (approximately constant) value of the Hubble parameter during
inflation and a, c are constants of O(1). This, of course, is just the equation of a
damped oscillator and the important point is that, during inflation, it is close to
being critically damped. If c < 0, which corresponds to positive mass-squared for
φ, V has a minimum at φ = 0. In this case, the average value of the field evolves
exponentially to φ = 0 and the large value at the end of inflation needed to get
a baryon asymmetry is not achieved [72]. However, if c > 0, which, in general,
requires non-minimal Kähler terms, V has a single minimum at φ0, where

|φ0| =
(

β HI Mn−3

λ

)1/(n−2)

(4.259)

with β a numerical constant which depends on a, c, n. Thus, |φ0| is parametrically
between HI and M , which can easily be large. In the angular direction, the
potential varies as cos(arg a + arg λ + n arg φ) and has n degenerate minima.
Further, again because of the near critical damping, the field evolves rapidly to
one of these minima, provided c is not too small [72]. Thus, at the end of inflation,
the average value of the field has a large value with a well-defined phase, which
is constant over scales large compared with the horizon.

This sets the boundary condition for the next era. After inflation the universe
enters a matter-dominated era in which the Hubble constant is explicitly time-
dependent:

H = 2

3t
(4.260)

(see section 1.4). The equation of motion is still given by (4.257), with V of
the form (4.258) but with H now given by (4.260). As t increases, H decreases,
so that the instantaneous minimum of V also decreases. Solving the equation of
motion reveals that φ tracks just behind this decreasing minimum.

This evolution continues until H ∼ m3/2 ∼ 1 TeV, where m3/2 is the
gravitino mass. At that point, the soft supersymmetry-breaking terms from the
hidden sector become comparable with those arising from inflation and, at later
times, dominate the evolution. The hidden-sector terms contribute a positive
mass-squared term for φ as well as an A-term, both having scales determined
by m3/2. Thus, the additional contribution to the potential V has the form

Vhs = m2
φ |φ|2 +

(
Am3/2λφn

nMn−3
+ h.c.

)
(4.261)

where mφ ∼ m3/2 and A = O(1). Consequently the equation of motion (4.257)
becomes underdamped as H decreases below m3/2. Two important effects now
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come in to play. First, the positive mass-squared term dominates the inflationary
contribution, so that φ begins to oscillate undamped about φ = 0, with initial
condition φ = φ0(t) at t ∼ m−1

3/2. The oscillation of φ is the coherent condensate
with number density

nφ = ρφ

mφ

= mφ|φ|2 (4.262)

where ρφ is the energy density in the condensate. Second, when the (CP-violating
and (B− L)-violating) hidden-sector A-term dominates the inflationary term, the
potential in the angular direction varies as cos(arg A + arg λ + n arg φ). Thus,
if arg A 
= arg a, a non-zero ‘torque’ is created and a non-zero θ̇ develops. This
is precisely what is needed to create a baryon/lepton asymmetry. The number
density for the U(1)B−L charge of the condensate is

nB−L = i(φ∗∂0φ − φ∂0φ
∗) = 2|φ|2θ̇ . (4.263)

The equation of motion has been integrated numerically by Dine et al [72], who
find that, at late times (t � m3/2), the ratio nB−L/nφ generically evolves to a
constant of order unity. At late times, the potential is dominated by the (positive)
mass term which, of course, conserves B − L. Thus, the B − L created during
the time when H ∼ m3/2 is conserved.

It remains only to convert this O(1) ratio to the physically relevant baryon
to entropy ratio nB−L/s. When H ∼ m3/2, the energy density of the condensate
ρφ ∼ m2

3/2|φ|2 is much smaller than the energy density ρI associated with the

coherent oscillations of the inflaton, ρI ∼ 3
8π

H 2m2
P . Using (4.259), we see that

ρφ

ρI
�

(
m3/2Mn−3

λmn−2
P

)2/(n−2)

. (4.264)

This ratio remains approximately constant until the inflaton decays at some time
when H < m3/2. Provided that the inflaton decays dominate, the entropy density
is given by

s � ρI

TR
(4.265)

where TR is the reheat temperature after inflaton decay. Thus

nB−L

s
= nB−L

nφ

TR

mφ

ρφ

ρI
. (4.266)

The ratio (4.264) is very sensitive to n. For n > 4, M ∼ m P and a reasonable TR ,
the ratio nB−L/s is generally too large. For example, to get the observed value of
nB−L/s ∼ 10−10 with n = 6 requires TR to be of order the electroweak scale. In
contrast, n = 4 gives

nB−L

s
∼ 10−10

(
TR

106 GeV

)(
10−3M

λm P

)
(4.267)
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which gives an acceptable ratio for a reasonable range of the parameters.
As long as the φ condensate decays via (B− L)-conserving decay processes

after the inflaton, the previous estimate of the ratio is insensitive to the details of
the decay. However, even though most of the inflaton energy is not converted to
radiation until H = HR < m3/2, the condensate might also decay via thermal
scattering as soon as φ is small enough, which is when gφ < T , where g is the
gauge or Yukawa coupling constant. This must be unimportant when H ∼ m3/2.
However [72], the value of φ/T is rather sensitive to the integer n. For n = 6, the
required condition is comfortably satisfied but the n = 4 case is borderline.

The only flat direction having B− L non-zero and having n = 4 corresponds
to

W = λ

M
(L Hu)

2 (4.268)

which might arise directly at the string scale or be generated from a GUT by
integrating out a heavy standard-model singlet field N with coupling gL Hu N . At
low energies, this operator generates neutrino masses

mν ∼ λ

2M
v2 (4.269)

where v is the Higgs VEV. Then

nB−L

s
∼ 10−10

(
TR

106 GeV

)(
10−8eV

mν

)
(4.270)

where mν is the lightest neutrino mass. Taking TR < 109 GeV then requires at
least one neutrino to be lighter than about 10−5 eV, with an even stronger bound
of 10−8 eV if the constraint TR < 106 GeV is enforced to ensure that thermal
scattering is unimportant when H ∼ m3/2. Interestingly, in this case, non-
minimal Kähler terms are not needed to ensure a negative mass-squared for φ.
This is because such terms can arise for the Higgs field via radiative corrections.

4.13 Exercises

1. Show that the nucleon–antinucleon annihilation rate falls below the
expansion rate when the temperature T � 20 MeV.

2. Show that in a time-reversal invariant theory baryon number is conserved.
3. Verify that for the SU(5) GUT N∗ has the value given in equation (4.41),

and that for the supersymetric theory, it has the value given in (4.42).
4. Show that the superheavy gauge bosons in the SU(5) GUT have the decay

modes given in equation (4.67) and that the colour-triplet Higgs has the
decay modes given in (4.71).

5. Verify that in the SU(5) GUT there are no two-loop contributions to
�(H3)−�(H̄3) and that the three-loop contribution given in equation (4.81)
does arise in the theory.
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6. Verify equation (4.86).
7. If the SO(10) GUT symmetry-breaking Higgs transforms as the 16-

dimensional representation, show that the gauge group breaks to SU(5) ×
U(1), and if the Higgs transforms as the 54-dimensioinal representation, then
the gauge group breaks to G422 given in equation (4.97).

8. Verify equations (4.130) and (4.131).
9. Verify equation (4.136).
10. Show that in the standard model the communication of CP-violation to the

baryon-number non-conserving processes, via the phase in the CKM matrix,
arises first in 12th order perturbation theory, as given in equation (4.210).
Verify equation (4.214).

11. Verify that decoupling of the baryon-number non-conserving interactions
occurs at a temperature T ∗ given by equation (4.223).

12. Verify equation (4.240) relating the asymmetry n A to the chemical potential
µa .

13. Show that in the direction (4.249) all of the F-terms derived from the
superpotential (4.248) are zero.

14. Show that in the direction (4.249) all of the D-terms are also zero.
15. Verify that the potential (4.258) has a minimum of the form given in (4.259).
16. Verify (4.264).
17. Show that in the MSSM the subspace of field directions in which all D-terms

vanish is 37-dimensional [72].

4.14 General references

• Riotto A 1998 Trieste 1998, High Energy Physics and Cosmology pp 326–
436, arXiv:hep-ph/9807454

• Trodden M 1999 Rev. Mod. Phys. 71 1463, arXiv:hep-ph/9803479
• Cline J M, Joyce M and Kainulainen K 2000 JHEP 0007 018, arXiv:hep-

ph/0006119
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Chapter 5

Relic neutrinos and axions

5.1 Introduction

We saw in chapter 1 that, for much of the time, the constituents of the early
universe were in approximate thermal equilibrium. This is because the rates for
the interactions of these constituents were large compared with the expansion
rate H . However, this thermal equilibrium was not maintained all of the time.
If it were, the current state of the universe would be entirely determined by its
temperature and we noted in the previous chapter the huge disparity between,
for example, the equilibrium baryon abundance and that actually observed.
Departures from equilibrium are, therefore, extremely important in determining
the abundance of the relics that can be observed today.

The equilibrium number density nX,eq of a species X is given by

nX,eq = g

(2π)3

∫
d3 p

1

eE(p)/T ± 1
(5.1)

where g is the number of internal degrees of freedom, E(p) = √(| p|2+m2
X ) and

+1 relates to fermions and −1 to bosons. In the relativistic limit T � m X , this
gives for bosons

nX,eq = ζ(3)

π2 gT 3 (5.2)

and for fermions

nX,eq = 3ζ(3)

4π2 gT 3 (5.3)

where ζ(3) = 1.202 06. A similar calculation shows that both the energy density

ρX,eq = g

(2π)3

∫
d3 p E(p)

1

eE(p)/T ± 1
(5.4)

and the pressure

pX,eq = g

(2π)3

∫
d3 p

| p|2
3E(p)

1

eE(p)/T ± 1
(5.5)
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scale as T 4 in the relativistic limit and the total (relativistic) energy density is

ρ = 3 p = π2

30
g∗,T T 4 (5.6)

where

g∗,T =
∑

bosons

gi

(
Ti

T

)4

+ 7

8

∑
fermions

gi

(
Ti

T

)4

(5.7)

and we are allowing for the possibility that different particle species i may be at
different temperatures Ti .

In thermal equilibrium, the entropy per comoving volume

s ≡ S

V
= ρ + p

T
(5.8)

is dominated by the contribution of relativistic particles and, to a good
approximation, it is given by

s = 2π2

45
g∗S,T T 3 (5.9)

where

g∗S,T =
∑

bosons

gi

(
Ti

T

)3

+ 7

8

∑
fermions

gi

(
Ti

T

)3

. (5.10)

Comparing (5.7) and (5.10), we see that when Ti = T , so that all particle species
are at the same temperature, g∗,T = g∗S,T = N∗, with N∗ defined in (1.104).
However, in general, they differ.

Since the entropy per comoving volume is conserved, it is useful to measure
the abundance of a species X by scaling its number density with the entropy
density. We therefore define

YX ≡ nX

s
. (5.11)

Then, using (5.2),(5.3) and (5.9), the equilibrium abundance in the relativistic
limit is

YX,eq,T = 45ζ(3)

2π4

geff

g∗S,T
= 0.278

geff

g∗S,T
(5.12)

where for bosons geff ≡ g, and for fermions geff ≡ 3g/4.
All cosmological relics contribute to the current total energy density ρ0 of

the universe, and it is customary to scale these densities with the critical density

ρc ≡ 3H 2
0

8πGN
= 10.54h2 keV cm−3 (5.13)

where H0 = 100h km s−1 Mpc−1 is the present Hubble constant and

h = 0.71+0.04
−0.03. (5.14)
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The dimensionless measure of the total energy density is then defined by

�0 ≡ ρ0

ρc
(5.15)

and, similarly, for a relic species X whose current energy density is ρX,0, we
define

�X ≡ ρX,0

ρc
. (5.16)

Thus, ∑
X

�X,0 = �0 (5.17)

and the energy density for any one relic species must be less than the total energy
density, so

�X,0 < �0 (5.18)

where data from the latest microwave anisotropy probe (WMAP) [1] give

�0 = 1.02± 0.02. (5.19)

The current energy density of a species X is given in terms of the current
abundance by

ρX,0 = nX,0m X = YX,0s0m X (5.20)

so provided we can calculate the current abundance YX,0, and the current entropy
density s0, a bound on the mass m X of any relic species may be obtained:

m X <
ρc�0

s0YX,0
. (5.21)

A stronger bound may be obtained by replacing �0 by �m where the latter derives
from the total matter content in the universe. The WMAP analysis gives

�mh2 = 0.135+0.008
−0.009 (5.22)

with h given by (5.14).
In the next section, we shall apply the foregoing considerations to neutrinos,

in order to see what can be inferred about their masses. In section 5.3 we shall
attempt a similar analysis for ‘axions’, hypothetical particles that are required to
exist if the ‘strong CP problem’ of the standard SU(3)× SU(2)×U(1) model of
particle physics is solved by the ‘Peccei–Quinn’ mechanism, currently the only
known solution of this problem. Axions must be very light, like the neutrinos.
If they have survived until the present, their mass too is strongly constrained by
various astrophysical and cosmological data.
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5.2 Relic neutrinos

Uniquely among elementary particles, neutrinos participate only in weak (and
gravitational) interactions. In the early universe, scattering processes, such as
νe ↔ νe, and annihilation processes, such as νν̄ ↔ eē, kept the neutrinos in
thermal equilibrium. The total cross section for such processes is σ ∼ G2

F T 2,
just on dimensional grounds, since the weak (Fermi) coupling constant GF ∼
10−5m−2

N has dimensions [M−2]. Since from (5.3) the relativistic number density
nν,eq is proportional to T 3, the total interaction rate �int ∼ σvnν,eq ∼ G2

F T 5.
When this is large compared with the Hubble expansion rate

H =
√

8πGN ρ

3
=

√
4π3GN g∗,T

45
T 2 (5.23)

there is thermal equilibrium. However, when T ∼ 1 MeV, the two rates are
comparable: �int ∼ H . Below this temperature, the Hubble expansion dominates
and thermal equilibrium is not maintained. The neutrinos are, therefore,
decoupled or ‘frozen out’. Their abundance is frozen at the value obtained at
the decoupling temperature Tdec ∼ 1 MeV. Thus, the present abundance

Yν,0 = Yν,eq,Tdec (5.24)

where, using (5.12),

Yν,eq,Tdec =
nν

s
= 0.278

geff

g∗S,Tdec
. (5.25)

For a single (left-)chiral neutrino species geff = 3/2 (including the antineutrino)
and, since Tdec ∼ 1 MeV,

g∗S,Tdec = 2+ 7
8 (4+ 3× 2) = 43

4 (5.26)

keeping only the electron and three families of chiral neutrinos as relativistic at
this temperature.

In order to determine the bound (5.21), we first need to calculate the present
entropy density

s0 = 2π2

45
g∗S,T0T 3

0 (5.27)

where g∗S,T0 is given by (5.10). At T = T0, the (relativistic) species contributing
to s0 are the photons, having g = 2, and the three families of neutrinos, also with
g = 2 (including the antineutrinos). Thus,

g∗S,T0 = 2+ 7

8
× 3× 2

(
Tν

T0

)3

. (5.28)

The temperature of the neutrinos Tν differs from T0 because after neutrino
decoupling, when the temperature falls below T = me ∼ 0.5 MeV, electrons
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and positrons annihilate via e+e− → γ γ and the entropy in the e± pairs is
transferred to the photons but not to the neutrinos which are already decoupled.
For Tdec > T > me, the species in thermal equilibrium with the photons
are the photons (g = 2) and the electrons and positrons (g = 4), so that
g∗ = 2 + 7

8 4 = 11
2 . When T � me, only the photons are in equilibrium, so

that g∗ = 2. Conservation of entropy, which is proportional to g∗ST 3, therefore
requires that the photon temperature increases by a factor ( 11

4 )1/3 following the
pairs’ annihilation, while the temperature of the neutrinos is unaffected. Thus,

Tν

T0
=

(
4

11

)1/3

(5.29)

g∗S,T0 = 43
11 (5.30)

and, with T0 = 2.725 K, equation (5.27) gives

s0 = 2889 cm−3. (5.31)

Finally, we note that from (5.19) and (5.14), the WMAP data give

�0h2 = 0.51± 0.04. (5.32)

Putting all of this together, we find that

�νν̄ H 2
0 =

8ζ(3)

3π

geffg∗S,T0

g∗S,Tdec

GN T 3
0 mν (5.33)

where
�νν̄ ≡ ρν,0

ρc
. (5.34)

Thus,
mν = �νν̄h2(94.1 eV) (5.35)

and (5.21) gives the Cowsik–McClelland bound [2, 3]

mν < 48 eV (5.36)

or, if we impose the stronger constraint deriving from (5.22),

mν < 12.7 eV. (5.37)

5.3 Axions

5.3.1 Introduction: the strong CP problem and the axion solution

We have already alluded in section 4.7 to the infinity of topologically distinct
vacua in electroweak theory that derive from the non-trivial (third) homotopy

Copyright © 2004 IOP Publishing Ltd



152 Relic neutrinos and axions

class of the electroweak SU (2) gauge group, as noted in (4.147). Since SU (2)
is a subgroup of SU (3), similar conclusions apply to QCD and

π3(SU(3)) = Z . (5.38)

Indeed the pure SU(3) gauge theory has the well-known ‘instanton’ solutions [4],
which approach these vacua as |x| → ∞. These have (Euclidean) action SE

satisfying

SE = 8π2|q|
g2

3

. (5.39)

Here q is the Pontryagin index and is given by

g2
3

16π2

∫
d4x tr(Gµν G̃µν) (5.40)

and it counts the number of wrappings of the S3, that is the SU (2) group manifold,
by the unitary matrix U3(x) specifying the (pure gauge transformation) vacuum at
infinity: Gµν

a is the gluon field strength. See, for example, [5]. The consequence
of this is that the true QCD vacuum, the so-called ‘θ -vacuum’, is a superposition
of these states

|θ〉 =
∑

q

e−iqθ |q〉 (5.41)

where |q〉 is the ‘vacuum’ with Pontryagin index q . Then, if we define V1 as the
operator that changes the winding number by one unit, so that

V1|q〉 ≡ |q + 1〉 (5.42)

we see that the θ -vacuum is an eigenstate of V1 with eigenvalue eiθ . This means
that the effective Lagrangian has an additional piece (a so-called ‘θ -term’)

�eff = �+ θg2
3

32π2
Ga

µν G̃aµν (5.43)

which is parity (P), time-reversal (T) and CP non-invariant.
A similar additional term also arises when an axial U(1) transformation is

performed on all of the quark fields:

U(1)A : q → eiαγ5q. (5.44)

The axial current j (5)
µ , defined by

j (5)
µ =

∑
q

qγµγ5q

=
∑

q

[q RγµqR − q LγµqL] (5.45)
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where qR and qL are the chiral components of q, is anomalous [6] (see also
chapter 4 [33, 34]) (see [5] for an account of this). In fact, for massless quarks,

∂µ j (5)
µ = N f g2

3

16π2
Ga

µν G̃aµν (5.46)

where N f is the number of flavours (= 2NG ). Thus, as in (4.126), such a θ -term
can be removed by performing the U(1)A transformation (5.44) with

α = − θ

2N f
. (5.47)

With all quarks massless, the θ -term is not physical, since it can be removed
by an (unobservable) U(1)A transformation. However, this is not the end of the
problem, since quarks are not massless. The contribution of the mass terms to the
QCD Lagrangian is

�m = −q Li Mij qRj − q Ri M†
i j qL j (5.48)

where i, j = 1, . . . , N f label the quark flavours, and Mij is the mass matrix. The
effect of the U(1)A transformation (5.44) on M is

U(1)A : M → e2iα M

M† → e−2iα M†. (5.49)

Thus, if M was initially Hermitian, so that there are no γ5s in the mass terms,
it is no longer so after the transformation and the transformed Lagrangian has
reacquired the P and T non-conserving interactions which the transformation
(5.44) with α satisfying (5.47) sought to remove. The quantity θ defined by

θ = θ + 2N f arg(det M) (5.50)

is invariant under U(1)A transformations and parametrizes the T-violation in the
(strong) QCD Lagrangian: θ is the effective QCD vacuum angle in the basis
where all quark masses are real, positive and γ5 free. If non-zero, it contributes
to the neutron electric dipole moment dn and the measured upper bound on this
requires [7]

θ � 10−10. (5.51)

The outstanding question, then, is why θ is so small. This is the ‘strong CP
problem’.

For each value of the parameter θ , we have a different QCD theory and there
is no a priori reason why one (very small or zero) value is preferred over another.
A possible escape from this is that θ is the expectation value of a field θ(x), whose
VEV is determined dynamically by an effective potential, as happens when the
electroweak symmetry is spontaneously broken by the Higgs-doublet field. Then
it is conceivable that, at the minimum of the effective potential, θ = 0.
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Before addressing the solution of the strong CP problem, we should note that
CP-violation might also arise in electroweak theory from terms analogous to the
QCD θ -term (5.43), namely

�θ = θ2g2
2

32π2
W a

µνW̃ aµν + θ1g2
1

32π2
Bµν B̃µν. (5.52)

Each of the θ -terms is a total divergence (see (4.134) and (4.136)) and so can
only contribute surface terms to the action. However, if we consider Euclidean
path integral configurations with finite action, the field strengths Fµν must fall
off faster than 1/r2 as r → ∞, where r is the Euclidean distance. For the U(1)

case, this requires that the vector potential Bµ falls off faster than 1/r and then
the surface integral is negligible as r →∞. The basic reason is that the θ1-term
has a trivial topological structure. We therefore drop it henceforth. In contrast,
the θ2-term is necessitated by the non-trivial topological structure (4.147) of
SU(2). It contributes non-zero surface terms to the action, even though it is a total
divergence (4.136). In this case, there are Euclidean path integral configurations
with finite action in which the field strengths Wµν ∼ 1/r4 as r → ∞ but
Wµ ∼ 1/r . For these configurations, the surface terms are not negligible.
However, we have already noted that of the four global U(1) symmetries of
the standard model, associated with baryon number (B) and the lepton numbers
(L�, � = e, µ, τ ), three, namely 1

3 B− L�, are exactly conserved, and the
remaining one, say U(1)B , is anomalous, as noted in (4.130). Thus, in a manner
directly analogous to that previously described for U(1)A (when the quarks were
massless), we may perform a U(1)B transformation of the quark fields which
removes the θ2 term. So θ2 is evidently not an observable parameter and the only
observable θ parameter is that associated with QCD.

This observation indicates that a possible solution of the θ problem is to
introduce a further U(1) symmetry, designed to allow the removal of the θ -term
by an appropriate transformation which changes arg det M. This is the solution
proposed by Peccei and Quinn [8] in which the symmetry group of the standard
model is augmented by an additional global, chiral U(1) symmetry, known
universally now as the U(1)P Q symmetry. However, we cannot do this with
just the minimal Higgs content of the standard model. This is because if we
use the U(1) to rephase the Higgs doublet by a phase factor eiδ, say, the down-
type masses are rephased by eiδ, but the up-type by e−iδ, so that arg(det M)

is unaltered. Thus we must introduce additional scalars. Further, the scalars
must not have equal and opposite U(1) charges, since otherwise the previous
objection still applies. It follows that the U(1) cannot be the existing U(1)Y

of the standard model, so a new U(1)P Q is required. Additional global U(1)

symmetries arise quite commonly in semi-realistic compactifications of heterotic
and type I/II string theories. Thus, their introduction to solve the θ problem
seems less unattractive now than when it was first proposed. Generically, at
the minimum of the effective potential, both the local gauge symmetries and
the global symmetry are spontaneously broken. Then, by Goldstone’s theorem
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(see [5] for a discussion), there is a scalar (Goldstone) boson having zero mass at
the Lagrangian level. This is the axion a(x). It is associated with the phase of the
U(1)P Q transformation and, under a U(1)P Q transformation parametrized by α,
it transforms according to

a(x)

vP Q
→ a(x)

vP Q
+ α (5.53)

where vP Q is the VEV associated with the spontaneous breaking of the U(1)P Q

global symmetry. Under the same transformation, a chiral fermion ( f ) transforms
as

f (x)→ e−ix f α f (x) (5.54)

where x f is the Peccei–Quinn (PQ) charge of f . Then the (PQ) current associated
with the symmetry is

j (P Q)µ ≡ ∂�

∂(∂µα)
= vP Q∂µa +

∑
f

x f f γ µ f (5.55)

and this is conserved at the classical level, because of the U(1)P Q symmetry.
However, because it is a chiral symmetry, the symmetry is anomalous, just as
U(1)A is. The anomaly has a form similar to that in (5.46):

∂µ j (P Q)
µ = ξ3

g2
3

32π2 Ga
µν G̃aµν + ξ2

g2
2

32π2 W a
µν W̃ aµν + ξ1

g2
1

32π2 Bµν B̃µν (5.56)

where the parameters ξi (i = 1, 2, 3) are model-dependent constants determined
by the U(1)P Q charges of the (chiral) fermion states.

The axion field a(x) appears explicitly in the Yukawa couplings of the
fermions to the scalar fields: it is these couplings which generate fermion mass
terms when the gauge symmetry is spontaneously broken. We now make a local
transformation of the fermion fields:

f (x)→ exp

[−ia(x)x f

vP Q

]
f (x) (5.57)

chosen so that the axion field is removed from the Yukawa terms. Because it is a
local transformation, the fermion kinetic terms generate (derivative) interactions
with the axion field

f γ µi∂µ f → f γ µi∂µ f + x f

vP Q
(∂µa) f γ µ f (5.58)

and because U(1)P Q is anomalous (see equation (5.56)), extra non-derivative
axion interactions are generated:

�anom = a(x)

vP Q

[
ξ3

g2
3

32π2
Ga

µν G̃aµν + ξ2
g2

2

32π2
W a

µν W̃ aµν + ξ1
g2

1

32π2
Bµν B̃µν

]
.

(5.59)
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Thus, the effective Lagrangian is

�eff = �sm +
[
θ + ξ3

vP Q
a(x)

]
g2

3

32π2 Ga
µν G̃aµν

+
[
θ2 + ξ2

vP Q
a(x)

]
g2

2

32π2 W a
µν W̃ aµν +

[
θ1 + ξ1

vP Q
a(x)

]
g2

1

32π2 Bµν B̃µν

+ 1

2
(∂µa)2 + 1

vP Q
(∂µa)[ j (P Q)µ − vP Q(∂µa)] (5.60)

where j (P Q)µ is given in (5.55). Thus, the anomaly generates a potential for a(x)

and it is no longer true that all values of 〈a〉 are allowed in the vacuum nor that
the axion field is massless. In fact, in the θ -vacuum, Peccei and Quinn showed
that

θ + ξ3

vP Q
〈θ |a(x)|θ〉 = 0 (5.61)

so that the T-violating QCD θ -term is cancelled. We have already noted that the
other θ -terms may be dropped, so what remains is an effective Lagrangian in
which the physical axion field â(x), given by

â(x) ≡ a(x)− 〈θ |a(x)|θ〉 (5.62)

has interactions with the gauge field strengths and the matter fermions:

�eff = �sm + ξ3g2
3

32π2vP Q
â(x)Ga

µν G̃aµν + ξ2g2
2

32π2vP Q
â(x)W a

µνW̃ aµν

+ ξ1g2
1

32π2vP Q
â(x)Bµν B̃µν + 1

2
(∂µâ)2

+ 1

vP Q
(∂µâ)[ j (P Q)µ − vP Q (∂µâ)]. (5.63)

Effectively, the offending T-violation has been removed by replacing the θ -
parameter by a dynamical (axion) field. So the next task is to determine the
physical properties of the axion and their implications for experiment.

5.3.2 Visible and invisible axion models

The properties of the axion may be calculated using current algebra techniques
[9–11,14] or by an effective Lagrangian technique [9,12,13,15]. The former give

ma � 0.62 eV

(
107 GeV

fa

)
(5.64)

where
fa = vP Q

ξ3
(5.65)
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fixes the strength of the axion coupling to the gluon field strength in (5.63). We
can see roughly how this estimate arises by noting that this coupling provides an
effective potential for the axion so that

m2
a =

〈
∂2Veff

∂a2

〉
= − 1

fa

g2
3

32π2

∂

∂a
〈Ga

µν G̃aµν〉

∼ �4
QC D

f 2
a

where the last estimate is just on dimensional grounds [16]. Thus comparison
with the current algebra result (5.64) would imply �QC D ∼ 80 MeV, which is a
bit low but in the right ballpark. Although the axion is not massless, it is clear that
any reasonable scale of symmetry breaking will give fa � �QC D, which implies
a very light axion as the price for solving the strong CP problem. For example,
fa ∼ v ∼ 250 GeV and (5.64) gives ma ∼ 24 keV.

The effective Lagrangian (5.63) shows that the axion will decay to two
photons with a Lagrangian of the form

�aγ γ = −gγ
αem

π

a(x)

fa
E · B. (5.66)

(Without confusion, we may suppress the hat now.) This decay mode

a → γ γ (5.67)

will be dominant unless
ma > 2me. (5.68)

The strength gγ may be derived from (5.63) and is given by

gγ = ξ1 + ξ2

2ξ3
(5.69)

so it is completely determined by the Peccei–Quinn (PQ) charge assignments.
Similarly, from (5.63) the axion coupling to the fermion f is

� f = − 1

vP Q
(∂µa)

∑
χ=R,L

x fχ f γµaχ f (5.70)

where
aχ = 1

2 (1± γ5) for χ = R, L . (5.71)

Equivalently, � f can be written in the form

� f = ig f
m f

vP Q
f γ5 f (5.72)
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with the strength g f given in terms of the PQ charges of the right- and left-chiral
components of f by

g f = x f R − x fL . (5.73)

There is by now overwhelming evidence that the original ‘visible’ axion,
characterized by

fa ∼ vP Q ∼ v ∼ 250 GeV (5.74)

does not exist [15]. We mention briefly some of the laboratory-based experiments
that lead to this conclusion. The coupling of the light quarks u, d to the axion
may be expressed in terms of isoscalar and isovector combinations in an obvious
way. The isovector part (λ1) determines the mixing between the axion and the π0

and, since the decay rate for pion beta-decay

π+ → π0e+νe (5.75)

is well known, the rate for the process

π+ → ae+νe (5.76)

can be reliably predicted in terms of the isovector amplitude (λ1). Now, if the
mass of the axion satisfies (5.68) it decays rapidly via the process

a → e+e− (5.77)

and a bound on the branching ratio for this process can be inferred from the
measured branching ratio [17] for the process

π+ → e+e−e+νe (5.78)

This requires that the isovector amplitude is small,

|λ1| � 2× 10−2 (5.79)

and this is sufficient to exclude the ‘short-lived visible axion’ models satisfying
(5.68), since λ1 is predicted to be large in such models [15].

However, if the mass of the axion satisfies

ma < 2me (5.80)

it can only decay slowly, via the process (5.67). In this case, there are strong
experimental bounds deriving from the failure to detect axion production in
various beam dump experiments. In such experiments, many different processes
may produce axions and while it is difficult to calculate individual processes
reliably, they contribute incoherently and cannot all vanish. Thus, the production
cross sections for the processes

pN → aX

eN → aX
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and the interaction cross section for

aN → X (5.81)

can be confidently estimated and collectively they require [18]

ma � 50 keV. (5.82)

Thus, if the solution of the strong CP problem is to be found using the PQ
mechanism, the axion must be ‘invisible’ in these experiments. All models which
achieve this use an SU(3) × SU(2) × U(1) singlet scalar field σ having a non-
zero U(1)P Q charge, which acquires a large VEV (vP Q � v) so that the beam
dump bound is satisfied. One way to achieve the invisibility is if the known
quarks and leptons have zero U(1)P Q charge but there exist some new quarks
(X ), presumably very heavy, having non-zero PQ charge. Such a possibility
was proposed by Kim [19] and by Shifman et al [20] and the axion is called
the ‘KSVZ’ or ‘hadronic’ axion. The coupling to the scalar field σ is given by

�KSVZ = −h X Lσ X R + h.c. (5.83)

and there is no (tree-level) coupling to the leptons. Another possibility, suggested
by Dine et al [21] and by Zhitnitskii [22], is that the known quarks and leptons do
carry PQ charge so, as in the original model, two Higgs doublets H1,2 are required
but they are coupled to the PQ field σ only via a term in the Higgs potential having
the form.

V DFSZ = λH t
1iτ2 H2σ + h.c. (5.84)

This was discussed in [5]. The axion in this model is called the ‘DFSZ’ or ‘GUT’
axion. Although differing considerably in their physical input, the models make
similar predictions for the coupling strength gγ of the axion to two photons:

gKSVZ
γ = − 0.96

gDFSZ
γ = 0.37.

5.3.3 Astrophysical constraints on axions

The experimental requirement discussed earlier that axions, if they exist, must
be ‘invisible’ implies that their coupling to photons, leptons and hadrons is very
weak. This is most naturally achieved by making fa ∼ vP Q very large which,
from (5.64) in turn entails ma being very small. For example, for a GUT axion,
we might expect fa ∼ vP Q ∼ vGU T = O(1015 GeV) and then (5.64) gives
ma ∼10−8 eV. In principle, any weakly interacting particle having a mass smaller
than typical stellar temperatures, i.e. in the keV–MeV range, can provide an
additional mechanism for a star to cool, besides the standard neutrino emission.
Of course, the interactions must be strong enough to ensure sufficiently copious
production of the particle so that large amounts of energy can be carried away
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by the new coolant but weak enough for the coolant to stream away without
undue hindrance from too many interactions. Since stellar evolution models are
well developed and successful in accounting for the observed stellar lifetimes, the
axion production cross sections and, hence, the strength of its various couplings
are constrained by the error bars on the observational data [23–27].

For example, in globular cluster stars, axions may be produced by the
Compton process

γ e → ae (5.85)

shown in figure 5.1, or by axion bremsstrahlung

eZ → aeZ (5.86)

shown in figure 5.2. The production cross section for both of these and, hence,
the stellar cooling rate is proportional to g2

aee where, using (5.72),(5.73), (5.65)
and (5.64),

gaee = ge
me

vP Q
= (xeR − xeL)mame

ξ3(0.62× 1016 eV2)
. (5.87)

The observational data yield the constraint [23, 28]

|gaee| � 0.5× 10−12 (5.88)

so that ∣∣∣∣ (xeR − xeL)

ξ3

∣∣∣∣ ma � 0.62× 10−2 eV (5.89)

which gives ma � 10−2 eV as the generic constraint on DFSZ models, taking the
unknown PQ charges to be of order unity. Of course, the mass of the hadronic
axion is unconstrained by these data.

The globular cluster data also constrain the axion–photon coupling, which
enters via the Primakoff process

γ ↔ a (5.90)

shown in figure 5.3, in which a photon is converted to an axion in the coherent
electromagnetic field of a nucleus or an electron. The production cross section is
proportional to g2

aγ γ where, from (5.66) and (5.64),

gaγ γ = gγ
αem

π fa
= ma gγ αem

π(0.62× 1016 eV2)
(5.91)

and the data yield the constraint [27]

|gaγ γ | � 0.6× 10−10 GeV−1. (5.92)

Then
|gγ |ma � 0.16 eV (5.93)
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Figure 5.1. Axion production via the Compton process.

and ma � 0.4 eV for both the DFSZ and KSVZ axions.
Similar arguments may be applied to the cooling of neutron stars. In the

supernova SN 1987A, thermal neutrinos transported away the binding energy of
the newly formed neutron star in about 10 s [29, 30], in accord with theoretical
calculations. The possibility of other mechanisms for removing the energy is,
therefore, constrained and, for axions, the axion–nucleon coupling is constrained,
which, in turn, constrains the mass [31, 32] to satisfy

ma � 0.01 eV. (5.94)

5.3.4 Axions and cosmology

If they exist, axions would be produced in the early universe and the relic axions
have important implications for current and future observations. In principle,
axions may be produced thermally or non-thermally and two distinct non-thermal
mechanisms have been proposed.

The discussion of thermal production is straightforward. At high
temperatures, axions are created (and destroyed) by photoproduction or
gluoproduction on quarks:

γ q ↔ aq (5.95)

gq ↔ aq.
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Figure 5.2. Axion bremsstrahlung.

When the temperature drops below that of the quark–hadron phase transition
T � �QC D ∼ 175 MeV, by the pion–axion conversion process (5.90)

π N ↔ a N. (5.96)

Each of these processes has an associated absorption rate

�T
abs = nT 〈σ |v|〉abs (5.97)

where nT is the number density of the axion’s target T = q or N , σ is the
scattering cross section, v is the relative velocity of the axion and the target T
and 〈. . .〉 denotes a thermal average. If the expansion rate of the universe is slow
compared with the total absorption rate �abs, then we expect that these processes
will eventually achieve thermal equilibrium with the standard (relativistic) axion
number density given by equation (5.2) with ga = 1. However, if the axions
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Figure 5.3. Photon-axion conversion: the Primakoff process.

interact too weakly, the total absorption rate is too slow for them ever to reach
thermal equilibrium and their number density freezes out with a value below na,eq.

To quantify this, we use the abundance defined in (5.11) with the equilibrium
value given in (5.12) with ga,eff = 1. The Boltzmann equation determining the
evolution of Ya is

dYa

dt
= −�abs(Ya − Ya,eq). (5.98)

Thus, Ya(t) always lies between its initial value and Y eq
a :

Ya(t)− Ya,eq = (Ya(0)− Ya,eq) exp

(
−
∫ t

0
�abs dt ′

)
. (5.99)

It is convenient to recast the integral in terms of the variable

x ≡ mN

T
. (5.100)

In the radiation era the scale factor R(t) ∝ t1/2, so that the Hubble rate

H = 1

2t
∝ T 2 ∝ x−2 (5.101)

and the relic abundance may be written as

Ya(x) = Ya,eq

[
1−

(
1− Ya(0)

Ya,eq

)
exp

(
−
∫ x

0

�abs(x ′)
x ′H (x ′)

dx ′
)]

. (5.102)

Below the quark–hadron phase transition, the nucleons are non-relativistic
and have an equilibrium number density given by (5.1) in the limit T � mN ,

nN = gN

(
m2

N

2πx

)3/2

e−x . (5.103)
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The thermally-averaged cross section is

〈σ |v|〉abs = g2
aN N x−2m−2

π (5.104)

with
gaN N ≈ mN

fP Q
. (5.105)

In the radiation-dominated era,

H =
(

8πρ

3m2
P

)1/2

= 2π

3

(πg∗
5

)1/2 m2
N

x2m P
. (5.106)

Putting all this together, we get

�abs(x)

H (x)
= 3gN

2π3

(
5

8g∗

)1/2
(

m3/2
N m1/2

P

fP Qmπ

)2

x−3/2e−x

≈
(

10

g∗

)1/2 ( ma

1.2× 10−3 eV

)2

x−3/2e−x (5.107)

using (5.64). Above the quark–hadron phase transition, the processes (5.95)
dominate and �abs/H scales as x , achieving its maximum value just after the
transition. Thus, we can estimate the final relic abundance as

Ya(∞) = Ya,eq

{
1−

(
1− Ya(0)

Ya,eq

)

× exp

[
− 3gN

2π3

(
5

8g∗

)1/2
(

m3/2
N m1/2

P

fP Q mπ

)2

I (xqh)

]}

= 0.278

g∗,dec

{
1− (1− 3.6g∗,decYa(0))

× exp

[
−
(

10

g∗

)1/2 ( ma

1.2× 10−3 eV

)2

I (xqh)

]}
(5.108)

where

I (xqh) ≡
∫ ∞

xqh

x ′−5/2e−x ′ dx ′

= − 2

3
[x−3/2

qh e−xqh (2xqh − 1)+ 2
√

π(erf(
√

xqh)− 1)] (5.109)

and g∗,dec is the value of g∗ at decoupling (freeze-out). The parameter xqh ∼ 5 is
the value of x at the quark–hadron phase transition, so that I ∼ 10−4. Thus, if the
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mass of the axion were greater than about 0.1 eV, the relic abundance would be
near to the equilibrium abundance. In fact, masses this large are already excluded
by the data, so the relic abundance depends upon the initial value. For example,
with ma saturating the SN 1987A bound (5.94), we estimate that

Ya(∞)

Ya,eq
∼ 0.007+ 0.993

Ya(0)

Ya,eq
. (5.110)

At high temperatures, it is plausible to assume that there are no axions, so that
Ya(0) = 0, in which case the relic abundance is very far from thermal. In any
event, it is clear that thermal axions cannot provide anything like the measured
matter density. As in (5.16), we define �th

a to be the fraction of the closure energy
density provided by thermal axions:

�th
a ≡

ρth
a

ρc
. (5.111)

Then, analogously to (5.35), we find that

ma = g∗,dec

10
�th

a h2(130 eV). (5.112)

Saturating the measured value (5.22) of the current mass density would require
ma ∼ 18 eV for closure, a value which is clearly excluded by the observational
bounds already obtained.

In all of the foregoing discussion, it was tacitly assumed that the classical
axion field had a constant value, in fact the value (5.61) needed to ensure that
the strong θ -term vanishes. However, in the early universe, when the temperature
T ∼ fa � �QC D, the U(1)P Q symmetry is broken and massless axions are
created. The potential which gives the axions a mass arises from non-perturbative
instanton effects only when the temperature drops to T ∼ �QC D. Thus, at high
temperatures, there is no reason why the axion should have the preferred value
for which θ = 0. When instantons generate a potential for the axion field, it
will roll towards the preferred value, so the foregoing assumption that the field
is a constant is not true during this era. This ‘misalignment’ of the field with its
ground-state value means that there is a non-zero axion field energy density which
we shall now calculate.

We assume that the axion field is spatially homogeneous and depends only
on time. Then, from (5.63), the effective axion action is

S =
∫

d4x
√

g( 1
2 ȧ2 − 1

2 m2
aa2 + �aȧ)

=
∫

d4x R3(t)( 1
2 ȧ2 − 1

2 m2
aa2 + �aȧ)

where R(t) is the cosmological scale factor and we have retained only the
quadratic (mass) term in the axion potential. The equation of motion is

d

dt
[R3(ȧ + �a)] + R3m2

a(T )a = 0. (5.113)
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The decay width �a of the axion is tiny, so we may safely ignore it henceforth.
Initially, at high temperatures T � �QC D, the axion is massless and we assume
that ȧ = 0. Then the field is constant:

a(t) = ai (5.114)

where ai is the initial ‘misaligned’ value of the field. As the temperature falls
m2

a(T ) increases and the equation of motion is

ä + 3H ȧ + m2
a(T )a = 0 (5.115)

where, as usual, H ≡ Ṙ/R is the Hubble parameter. Eventually, the temperature
reaches Ti at which

ma(Ti ) = 3H (Ti) (5.116)

and, thereafter, a(t) oscillates with frequency ma(T ). The energy density
associated with the axion field is

ρa = 1
2 ȧ2 + 1

2 m2
aa2 (5.117)

so, using (5.115),
ρ̇a = ṁamaa2 − 3H ȧ. (5.118)

Averaging over one oscillation

〈ȧ2〉 = m2
a〈a2〉 (5.119)

and then (5.118) gives

〈ρ̇a〉 =
(

ṁa

ma
− 3H

)
〈ρa〉 (5.120)

whose solution is
〈ρa〉R3(t) ∝ ma(T ). (5.121)

Thus, the axion number density na = 〈ρa〉/ma(T ) scales as R−3(t), even though
the axion mass is varying. The entropy density s also scales in this way, so
assuming that there has been no entropy production since the axion field began
to oscillate, their ratio is conserved. When the temperature T = Ti , given by
(5.116),

ρa = 1
2 m2

a(Ti )a
2
i (5.122)

since initially ȧ = 0, and

na

s

∣∣∣∣
Ti

= 45ma(Ti )a2
i

4π2g∗T 3
i

= 45a2
i

2
√

5πg∗Ti m P
. (5.123)

The present (misaligned) axion energy density is given as a fraction of the closure
energy density by

�mis
a = ρmis

a0

ρc
= na

s

∣∣∣∣
Ti

ma
s0

ρc
. (5.124)
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Now, recall that the axion field satisfies (5.61), so ai is given in terms of the initial
value θ i of the angular field θ by

ai = faθ i (5.125)

where fa is given by (5.65), and θ i can be anywhere in the range (−π, π). The
temperature Ti found by solving (5.116) is about 1 GeV for an axion of mass
ma = 10−5 eV and

Ti

1 GeV
�

( ma

10−5 eV

)0.18
. (5.126)

Then

�mis
a � 0.16h−2

(
10

g∗

)1/2 ( ma

10−5 eV

)−1.18
θ

2
i . (5.127)

Note the negative power dependence on ma . If we replace θ i by its root mean
square (rms) value π/

√
3 in the range (−π, π), we see that the axion energy

density from the vacuum misalignment does not exceed the measured matter
density (5.22), provided that the mass of the axion is greater than about 10−5 eV.

However, it is not clear that we are justified in replacing θ i by its rms value.
In each causally connected domain, we expect θ i to have an independent value.
If these values are randomly set, then it is reasonable to replace θ i by its rms
value provided that the observable universe is composed of many such causally
connected domains. We shall see later that there is good evidence that there was
a period of inflation in the early universe and, if the reheating temperature after
this is over is lower than that of the PQ symmetry breaking, then the observable
universe is composed of only about one causal region and we have no a priori
reason for selecting any particular value of θ i in our patch and, consequently, no
way of estimating �mis

a . In any case, (5.127) is only a rough estimate. There are
theoretical uncertainties, which amount to a factor � � 1

3 –3, deriving from the
PQ-model dependence and the nature of the QCD phase transition and also from
anharmonic corrections which give a factor f ( θ i ) when the initial value θ i is in
a region where other terms in the axion potential are important, besides just the
quadratic terms which we have retained.

Further, the homogeneous oscillations of the axion field correspond to
the creation of zero momentum axions and it has been argued that non-zero
momentum axions, with a momentum spectrum g(k), are created before the
temperature drops to T ∼ �QC D by other non-perturbative effects. In
consequence, the axion density deriving from the ‘misalignment’ effect is an
underestimate of the actual density, as we shall see. The U(1)P Q symmetry
with which we are concerned is directly analogous to the global U(1) symmetry
relevant to a superfluid 4He condensate at low temperatures. In this system, it is
known that besides the ordinary bulk superfluidity, analogous to our homogeneous
axion field, there are also vortex configurations in which the phase of the order
parameter (or the pair wavefunction) varies spatially, although its magnitude
remains constant (determined by the density of the superfluid condensate). Such
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topological configurations arise because the fundamental group of the manifold
S1 associated with symmetry group U(1) of the ground state is non-trivial:

π1(S1) = Z . (5.128)

As we traverse any closed path threaded by a vortex, the phase of the condensate
varies continuously and changes by an integral multiple of 2π when we return to
the starting point. By shrinking the size of the closed path, it is clear that there
is a linear vortex on which the phase of the order parameter is undefined. In a
real superfluid, there is a cylindrical core region, centred on this line, in which the
magnitude of the order parameter varies, approaching zero on the line.

Similar considerations apply to our U(1)P Q symmetry. In the early universe
when the PQ symmetry is broken, we expect the axion field to vary spatially, since
it is uncorrelated beyond the horizon. These topological considerations (5.128)
indicate that a random ‘axion string’ network will, therefore, be formed [33] just
as vortex configurations are formed in superfluid 4He. The thickness of the core
region is δ ∼ f −1

a . Roughly, there are two types of string: long strings, spanning
the horizon, and small string loops. The loops oscillate and radiate axions, and this
is the dominant energy-loss mechanism [11, 34]. The axions are massless when
they are emitted and the emission continues until they acquire a mass via instanton
effects when the temperature drops to T ∼ �QC D. A numerical simulation of a
random network of (global) axion strings has been performed recently [35, 36].
This shows that, after a short initial period of relaxation, the network evolves to
a ‘scaling’ regime, in which the large-scale behaviour of the network scales with
the Hubble radius and the energy density is given by

ρ
string
a = ξµ

t2 (5.129)

where ξ is a constant and µ is the string tension per unit length. Such behaviour
was predicted theoretically by Albrecht and Turok [37].The radiated axions have
a momentum spectrum g(k) which is peaked around wavelengths of order of
the horizon scale (k−1 ∼ (4π H )−1) and which decays exponentially for shorter
wavelengths. The contribution �

string
a to the current fractional relic axion energy

density is calculated as follows:

�
string
a � (0.39± 0.26)h−2

( ma

10−5 eV

)−1.18
(5.130)

which is somewhat larger than, but comparable with, the value obtained from
the misalignment mechanism if we take the rms value for θ i . So applying the
measured matter density bound (5.22) requires the axion mass to be greater than
about 10−5 eV, as before. The numerical simulation was performed on a 2563

lattice but it has been noted [38] that this might not be sufficient to observe
logarithmic corrections, proportional to t−2 ln t, to the scaling behaviour (5.129).
Such corrections would have the effect of enhancing axion production at later
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times, thereby reducing the lower bound on the axion mass needed to avoid
overclosure. Of course, if the reheating temperature after inflation is lower than
that of the PQ symmetry breaking, then axion strings and the radiated axions
are washed out and essentially all of the relic axions come from the coherent
oscillations of the zero mode discussed earlier.

Axions produced at a temperature around T ∼ �QC D when they acquire a
non-zero mass are non-relativistic and they are, therefore, candidates for cold dark
matter (CDM). Studies of large-scale structure formation indicate that CDM is an
important component and, if so, it gets trapped in the gravitational potential and
contributes to the galactic halo. Such axions might be detected experimentally
using a cavity permeated by a strong static magnetic field [39] via the Primakoff
process (5.90). When the cavity frequency is tuned to the axion mass, the galactic
halo axions convert resonantly into photons of that frequency. A cylindrical cavity
of radius 1 m has a lowest TM mode of frequency f = 115 MHz, corresponding
to an axion of mass ma = 0.475× 10−6 eV. Experiments using a tunable cavity
of this size have produced exclusion zones in the axion mass versus axion–photon
coupling (ma, gaγ γ ) plane. All of these are normalized assuming that the local
halo (CDM) density is entirely in the form of axions. The conversion power of the
resonant cavity is proportional to g2

aγ γ and, until recently, the power sensitivity
levels were too high to bound theoretically favoured models. However, a recent
experiment at LLNL [40] has excluded KSVZ axions in the range

2.77× 10−6 eV < ma < 3.3× 10−6 eV (excluded) (5.131)

and further experiments are underway at LLNL and Kyoto with sufficient
sensitivity to detect DFSZ axions at even a fraction of the local halo density.

5.4 Exercises

1. Verify the form (5.63) giving the interactions of the axion with the gauge
fields and fermions.

2. Show that axion decay into two photons is described by the Lagrangian
(5.66) with gγ given by (5.69).

3. Show that axion decay into an electron–positron pair is proportional to g2
aee

where gaee is given by (5.87).
4. Verify the expression (5.108) for the final axion relic abundance.

5.5 General references

The books and review articles that we have found most useful in preparing this
chapter are:

• Peccei R D 1989 The Strong CP Problem in CP Violation ed C Jarlskog
(Singapore: World Scientific)
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• Kolb E R and Turner M S 1990 The Early Universe (Reading, MA: Addison-
Wesley)

• Muryama H, Raffelt G, Hagmann C, van Bibber K and Rosenberg L J 2000
Axions and other very light bosons (Review of Particle Properties Groom D
E et al Particle Data Group) Eur. Phys. J. C 15 1
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Chapter 6

Supersymmetric dark matter

6.1 Introduction

The cosmological bounds on the masses of various known or hypothethical relic
particles derive from the requirement that the total energy density of the relic
particles X does not exceed the measured present total energy density ρ0. In
terms of dimensionless quantities, this gives

�X,0 < �0 (6.1)

where �X,0 and �0 are defined in (5.16) and (1.41) with �0 given by (5.19).
Some of the relics are known. For example, the present photon energy density

ργ = π2

15 T 4
0 , with T0 = 2.73 K = 2.35× 10−4 eV the present temperature of the

cosmic microwave background, gives �γ h2 � 2.471× 10−5. Thus,

�γ = 5.1× 10−5 (6.2)

taking h = 0.71+0.04
−0.03 as in (5.14). Similarly, and as noted previously, the

measured primordial deuterium and helium abundances require that the baryon
energy density gives �bh2 = 0.019± 0.003. Thus,

�b = 0.039± 0.004 (6.3)

and baryons constitute not more than a few percent of the total. Relic neutrinos
also contribute and we may invert (5.35) to obtain a contribution of

�νν̄ = mν

47.4 eV
(6.4)

for each relativistic species with mν � T0. The current experimental bound for
the electronic species from the Mainz and Troitsk tritium beta-decay experiment
[1] is far more restrictive:

mνe < 2.2 eV at 95% CL. (6.5)
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Further, this bound effectively applies to all neutrino species, since the SuperK
[2] and SNO [3] data show that the mass differences for atmospheric and solar
neutrinos are tiny:

�m2
ν,atmos � 3× 10−3 eV2 (6.6)

�m2
ν,solar � 7× 10−5 eV2. (6.7)

Thus the sum of the neutrino masses is at most, 6.6 eV and likely to be much
smaller. (When mν � T0, the relativistic fermion density gives �ν = 0.23�γ .)
In addition, simulations of structure formation in a neutrino-dominated universe
are unable to reproduce the observed structure. The best fit to all of the
cosmological data [4] gives

�ν < 0.015 (6.8)

which for three degenerate species implies

mνe < 0.23 eV at 95% CL. (6.9)

It is, therefore, clear that relic neutrinos too constitute only a small fraction of the
total energy density. We might have anticipated that the dominant contribution to
the present energy density would come from the matter comprising the galaxies
and the contribution of the baryons is the largest. However, it is nowhere near
large enough to account for the total energy density. Thus, we may be confident
that the major contributions to �0 are not from known sources. In any case, as we
shall shortly see, there is strong evidence that there is a large amount of invisible
‘dark matter’ in the universe [5].

The possibility of dark matter was first suggested by Kapteyn [6] in 1922,
who noted that its mass could be estimated from the velocity distribution of stars
in our galaxy. The strongest evidence for its existence comes from measurements
of rotation speeds of spiral galaxies. If we consider a star moving with speed v(r)

in a circular orbit of radius r outside of a spherically symmetric mass distribution
with a total mass M(r) interior to r , then

GN M(r) = rv(r)2. (6.10)

The speed v(r) can be determined for luminous objects such as stars or gas clouds
by measuring the Doppler shifts in emission or absorption lines and the mass
distribution M(r) is then inferred from (6.10). The mass of a spiral galaxy can be
determined by taking r to be the radius within which most of the light is emitted.
In this way, the average galactic mass 〈mgal〉 can be calculated. Combining this
with the measured number density ngal determines the average energy density

〈ρlum〉 = ngal〈mgal〉. (6.11)

These measurements show that the contribution of luminous matter is

�lum � 0.01. (6.12)
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In other words, luminous matter accounts for less than 1% of the mass of the
universe. When these techniques are applied to the rare stars and neutral hydrogen
(HI) clouds beyond the radius where light from the galaxy is emitted, it is
found that M(r) continues to increase, reaching a maximum in the range 150–
300 km s−1 within a few kpc, and then remaining constant out to the largest radii
at which HI clouds can be found. If there were no matter outside of the luminous
region, then from (6.10) v(r) should fall off as r−1/2. Thus, the measurement of
roughly constant values of v(r) in over 1000 galaxies indicates that the galaxies
have huge ‘halos’ of dark matter, with mass 3–10 times that of the luminous
component. The rotation curve for our own Milky Way galaxy is difficult to
measure, because the observer is inside the galaxy but there is little doubt that our
galaxy too is immersed in a dark matter halo. Further, by studying the motion of
galactic clusters a universal mass density corresponding to [7]

�mh2 � 0.1–0.3 (6.13)

can be inferred. In fact, it was measurements of cluster galaxy dynamics that led
to the discovery of dark matter by Zwicky [8] in 1933. Recent data on the acoustic
peaks in the cosmic microwave background (CMB), combined with independent
data from simulations of cluster formation, high-z supernovae, quasars, and the
Lyman alpha forest, give the best-fit values [4]

�0 = 1.02± 0.02 �mh2 = 0.135+0.008
−0.009 (6.14)

�� = 0.65± 0.05 �bh2 = 0.0224± 0.0009 (6.15)

where �m ≡ ρm/ρc is the total matter contribution, distinguished from the
cosmological constant contribution �� ≡ ρvac/ρc = �/3H 2

0 , and ρc ≡ 3M2
P H 2

0
is the critical density defined in (1.37), and h = 0.71+0.04

−0.03. Clearly, �m 
= �b.
So there must be non-baryonic dark matter and the first problem is to identify
its nature. There is also a second problem, which is to explain the discrepancy
between the observed luminous matter density given in equation (6.12) and
the calculated baryon density (6.3) required for the success of the primordial
nucleosynthesis calculation. We shall have little to say about the latter problem,
save to note that it seems at least possible that it can be solved by a combination
of dark stars, intracluster gas and the Lyman alpha forest [9].

In this chapter, we first characterize the general properties that dark matter
particles possess, whatever they are. Since there are no satifactory candidates
within the standard SU(3) × SU(2) × U(1) theory of strong and electroweak
interactions, it is natural to look for suitable candidates in the (minimal)
supersymmetric version of the standard model, the MSSM. One possibility, that
gravitinos make up the dark matter, arises in any locally supersymmetric theory.
It is studied in section 6.3. However, the most popular view is that dark matter is
made of neutralinos. The parameters of the MSSM that control the mass and other
properties of the neutralino are detailed in section 6.4. In the following section,
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we discuss the bounds that can be put on the neutralino mass using cosmological
data and also the constraints on the parameters of the MSSM that arise from other
data whose theoretical prediction depends upon these parameters. We discuss the
prospects for the experimental detection of (neutralino) dark matter in section 6.6.

6.2 Weakly interacting massive particles or WIMPs

To have survived until the present epoch, any (non-baryonic) dark matter particles
must either be stable or have a lifetime comparable with the present age of the
universe. Further, if the dark matter particles have electromagnetic or strong
interactions, they would bind to nucleons and form anomalous heavy isotopes.
Such isotopes have been sought but not found [10]. Thus, the dark matter
particles can, at best, participate in weak (and gravitational) interactions or, at
worst, only in gravitational interactions. One obvious possibility satisfying the
foregoing constraints is that the dark matter consists of neutrinos. However,
we have already noted that the present data on neutrino masses (from tritium
decay, atmospheric and solar neutrino experiments) show that although neutrinos
might barely account for the inferred mass density (5.22) or (6.14), simulations
of galaxy formation and cluster formation require cold dark matter. That is, the
dark matter is made of weakly interacting massive particles (WIMPs). No such
particles exist in the standard model but they do in its enlargement to the minimal
supersymmetric standard model (MSSM).

We can estimate the relic density of WIMPs using the same techniques as
those used for relic neutrinos in section 5.2. The difference is that the equilibrium
abundance for a cold (i.e. non-relativistic) fermion species X is obtained from
(5.1) by taking the limit T � m X . The result is

nX,eq = gX

(
m X T

2π

)3/2

e−m X /T . (6.16)

Roughly speaking, freeze-out of such relics occurs when their annihilation rate
�A becomes equal to the Hubble rate H . The annihilation rate is given by

�A = nX,eq〈σA|v|〉 (6.17)

where σA is the annihilation cross section, v is the relative velocity of the
annihilating WIMPs, and 〈. . .〉 denotes an averaging over a thermal distribution
of velocities of each particle at the decoupling (freeze-out) temperature Tdec. The
Hubble rate is

H =
√

8πGN ρ

3
= 1.66

√
g∗,T

T 2

m P
. (6.18)

The abundance YX,Tdec of X -particles at freeze-out is, therefore, given by

YX,Tdec ≡
nX,eq,Tdec

sdec
= Hdec

sdec〈σA|v|〉 (6.19)
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where

sdec = 2π2

45
g∗,S,TdecT 3

dec (6.20)

is the entropy density at freeze-out, with g∗,S,T defined in (5.10) As before, this
gives the current abundance YX,0. Equating (6.17) and (6.18) then yields

�X,0 ≡ ρX,0

ρc
= YX,0

s0

ρc
m X

= m X

〈σA|v|〉
s0

ρc

Hdec

sdec
(6.21)

= m X

Tdec

1√
g∗,Tdec

(
2× 10−27cm3s−1

〈σA|v|〉

)
. (6.22)

The proportionality of �X,0 to the inverse of 〈σA|v|〉 means that the relic
abundance is reduced as σA increases and this might have been anticipated: the
more efficiently annihilation proceeds, the fewer relics remain. Taking gX = 2,
the freeze-out temperature satisfies(

m X

Tdec

)−1/2

em X /Tdec = 0.076〈σA|v|〉 m X m P√
g∗,Tdec

≡ K (6.23)

which may be solved iteratively

m X

Tdec
� ln K + 1

2 ln ln K . (6.24)

For a typical value g∗,Tdec = 60 and a typical weak cross section

〈σA|v|〉 = c
α2

em

8πm2
X

= c

(
100 GeV

m X

)2

2.5× 10−27 cm3 s−1 (6.25)

where c is of order unity, this gives

m X

Tdec
� 22+ ln c − ln

( m X

100 GeV

)
. (6.26)

Thus,

�X,0 � 6× 10−27cm3s−1

〈σA|v|〉 (6.27)

and, using (6.22), a typical weak cross section (6.25) gives

�X,0 = 2.3

c

( m X

100 GeV

)2
(6.28)

remarkably close to (6.14) for m X � 100 GeV since h2 � 1
2 .
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The foregoing analysis shows that the dark matter might well be WIMPs but
there remains the question of what the WIMPs actually are. Since there are no
satisfactory candidates within the standard model, we must investigate plausible
extensions of it. The most favoured, which has been studied in great detail in
recent years, is the MSSM. (See, for example, [11]). We shall say more about the
MSSM in section 6.4. First we discuss the possibility that dark matter is made of
gravitinos, particles that occur in any locally supersymmetric theory.

6.3 The gravitino problem

In a supersymmetric theory, all particles have an associated superpartner, called a
‘sparticle’, whose spin differs by 1

2 from that of the original particle. In a (locally
supersymmetric) supergravity theory, the sparticle associated with the (spin-2)
graviton has spin 3

2 and is called the ‘gravitino’. When supersymmetry is broken,
the gravitino acquires a non-zero mass (see chapter 5 of [11], for example)

m3/2 = eG0/2m P (6.29)

where G0 is the expectation value of G in the physical vacuum, with G defined in
(2.144), and m P = G−1/2

N = 1.22× 1019 GeV is the Planck mass. If gravitinos
have survived until the present epoch, then their energy density ρ3/2,0 could, in
principle, dominate but not exceed [12] the present total energy density ρ0 of the
universe. Thus,

�3/2 < �0 (6.30)

where �0 is defined in (1.41) and

�3/2 ≡ ρ3/2,0

ρc
. (6.31)

As for neutrinos, we can use this to bound m3/2. Since gravitinos interact only
gravitationally, their interaction rate

�3/2,int ∼ G2
N T 5 ∼ T 5

m4
P

(6.32)

just on dimensional grounds. They decouple when

�3/2,int = H ∼ T 2

m P
(6.33)

which occurs when T ∼ m P and while they are still relativistic. After decoupling,
the number of gravitinos per comoving volume is constant so, as in (5.24),

Y3/2,dec = Y3/2,0. (6.34)
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Thus, as in (5.33),

�3/2 H 2
0 =

8ζ(3)

3π

g3/2effg∗S,T0

g∗S,Tdec

GN T 3
0 m3/2 (6.35)

where g3/2,eff = 3
4 × 4, since the gravitino has spin- 3

2 , Putting all of this together
gives

m3/2 = �3/2h2g∗S,Tdec(4.4 eV) � 1 keV (6.36)

taking g∗S,Tdec ∼ 200 and using the value (1.42) for �0. This is far smaller
than the �10 TeV scale needed to protect the hierarchy and to give TeV-scale
masses to the sparticle spectrum, remembering that m3/2 controls the size of the
supersymmetry-breaking masses for matter.

A more likely scenario is that gravitinos are heavier but decayed before the
present epoch. The fastest decay mode of the gravitino is into a standard model
particle and its supersymmetric partner, with rate

�3/2,max �
m3

3/2

m2
P

. (6.37)

When the temperature T ∼ m3/2, the expansion rate H � m2
3/2/m P , which

is faster by a factor m P/m3/2. This means that the equilibrium condition
� ≥ H can only be reached at temperatures far below m3/2 and, at these
temperatures, collision processes are too weak to produce gravitinos. So the
gravitino population can only be reduced by decays. Until they decay, the cosmic
energy density is dominated by gravitinos with energy density

ρ3/2 = 3ζ(3)

π2

g(T )

g(Tdec)
m3/2T 3 (6.38)

where g(T ) is the effective number of massless degrees of freedom at temperature
T . The expansion rate

H =
√

8π

3

ρ
1/2
3/2

m P
(6.39)

becomes equal to the decay rate �3/2 when T � T3/2, where

T3/2 �
(

πg(Tdec)

8ζ(3)g(T3/2)

)1/3
(

�2
3/2m2

P

m3/2

)1/3

. (6.40)

When they decay the energy is thermalized and reheats the universe to a
temperature

T ′3/2 �
(90ζ(3))1/4

π

(
m3/2T 3

3/2

g(T3/2)

)1/4

. (6.41)
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Using (6.40), this gives

T ′3/2 �
(

45g(Tdec)

4π3g2(T3/2)

)1/4 √
�3/2m P . (6.42)

If we use the fastest decay rate (6.37), we find that T ′3/2 < T0 ∼ 3 K if
m3/2 � 10 MeV. The increase in temperature after reheating

T ′3/2

T3/2
> 451/4

√
2ζ(3)1/3π−13/12g(T3/2)g−1/12(Tdec)

(
m P

m3/2

)1/6

(6.43)

results in a large increase in the entropy density, by a factor (m P/m3/2)
1/2 since

s ∝ T 3. So if the gravitinos decay after nucleosynthesis, the baryon number to
entropy ratio nB/s during nucleosynthesis must have been much higher than now.
This leads to too much helium and not enough deuterium [13]. To avoid these
problems, we require that T ′3/2 > 0.4 MeV, so that any previously formed helium
nuclei are broken, the neutron-to-proton ratio is restored to its equilibrium value
and nucleosynthesis restarts. If we use the fastest decay rate (6.37) in (6.42), this
gives

m3/2 � 10 TeV (6.44)

which might, just, be consistent with solving the hierarchy problem. Whether
or not the maximal decay rate (6.37), associated with the decay to a particle and
sparticle, actually occurs depends on the details of the supergravity model used.
For example, if the gravitino is the lightest supersymmetric particle (LSP), then
if it decays it can only decay to non-supersymmetric particles, with a decay rate
less the maximal. This decreases both T3/2 and T ′3/2, thereby exacerbating the
problem.

6.4 Minimal supersymmetric standard model (MSSM)

Although it is not required theoretically, it is customary to impose an ‘R-parity’
invariance on the supersymmetric standard model to ensure the absence of fast
proton decay. The quantity R is defined as R = (−1)3(B−L)+2S, where B is
the baryon number, L is the lepton number and S is the spin. It is assumed to
be multiplicatively conserved in all interactions. Then the most general MSSM
has a total of 124 independent parameters [14]. These are comprised of three
gauge coupling constants (g1,2,3), three gaugino masses (M1,2,3) and two gaugino
phases, four Higgs/Higgsino sector mass parameters (m2

Hu
, m2

Hd
, B, µ) and one

phase, nine fermion masses, 21 scalar squark and slepton masses, 39 mixing
angles and 41 phases and θ (the QCD θ -parameter discussed in section 5.3.1).
This model is sometimes referred to as MSSM-124 [15]. In contrast, the
standard model has ‘only’ 19 parameters: the three coupling constants, two Higgs
parameters (m2

H , v), nine fermion masses, three mixing angles and one phase,
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and θ . Since there are two Higgs doublet chiral superfields Hu and Hd in the
MSSM, there are two VEVs, vu and vd . The combination v2

u + v2
d is fixed by

the measured value of m Z and is, therefore, not a free parameter but the ratio
tan β ≡ vu/vd is a free parameter. The MSSM has five physical Higgs particles
of which two (H±) are charged, two (h0, H 0) are neutral scalars and one (A0)

is a neutral pseudoscalar. The masses are all fixed in terms of the (known) gauge
coupling strengths and three parameters, two of which (µ, tan β) have already
been defined. Without loss of generality, the third may be taken to be m A. Apart
from θ and the CKM mixing angles and phase, the unknown parameters of the
MSSM therefore consist of 63 masses and mixing angles and 43 phases. Even
if all of the phases are set to zero, it is still not feasible to explore the remaining
parameter space (M1,2,3, µ, tan β, m A, 21 scalar squark and slepton masses and
36 mixing angles).

The number of parameters is, therefore, drastically reduced by making
further assumptions. In the low-energy approach [16], special phenomenolgically
viable points in the parameter space are selected. For example, the five scalar
(squark and slepton) symmetric 3 × 3 mass matrices and the three trilinear
coupling A-matrices might be assumed to be generation independent or that they
are flavour-diagonal in a basis where the quark and lepton mass matrices are
diagonal. Neither of these has any strong theoretical motivation. Alternatively,
in the high-energy approach that we shall follow, the parameters of the MSSM
are treated as running parameters. In other words, the parameters ‘run’ or evolve
with the renormalization scale in a way determined by the renormalization group
equations. Then a structure is imposed on the parameters at some high energy
scale. This would be the case if there is an underlying GUT symmetry, for
example. In such a model, it is assumed that the gauginos all have a common
mass m1/2 at some (a priori unknown) unification scale m X :

M1(m X ) = M2(m X ) = M3(m X ) = m1/2. (6.45)

The gaugino masses at the electroweak scale are determined using renormaliza-
tion group equations and at the electroweak scale their ratios are determined by
the gauge coupling strengths:

M3

M2
= α3

α2

M1

M2
= 5α1

3α2
(6.46)

where α3 ≡ g2
3/4π etc. Similarly, it is also assumed that all scalars, except

possibly the Higgs soft masses squared m2
1,2, have a common squared-mass m2

0
and that the trilinear cofficients have a common value A, at the unification scale.

m2
Q̃ L

(m X ) = m2
ũc

L
(m X ) = m2

d̃c
L
(m X ) = m2

0 I3 (6.47)

m2
L̃
(m X ) = m2

ẽc
L
(m X ) = m2

0 I3 (6.48)

Au = Ad = Ae = A I3. (6.49)
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This happens (in supergravity models) if the origin of the supersymmetry
breaking is a ‘hidden’ sector which shares only gravitational interactions with
the ‘observable’ sector that we inhabit. (The unification scale, as well as the
value of the unified gauge coupling strength, is determined from the measured
low-energy values of the coupling constants using the renormalization group
equations.) An advantage of this approach is that one of the diagonal Higgs
mass-squared parameters is typically driven negative by the renormalization
group running, so electroweak symmetry breaking is thereby generated radiatively
and the scale at which this happens is intimately connected to the low-energy
supersymmetry breaking. The minimal supergravity (mSUGRA) model starts
with seven parameters (if we allow for a non-minimal Kähler potential), namely
m2

1, m2
2, µ(m X ), A, B, m1/2, m2

0. Using the renormalization group equations,
these determine m Z , tan β (and m2

A): it is customary to choose tan β as an input
parameter and m Z is, of course, fixed. Then |µ| and B are outputs and the
remaining unknowns are m2

1, m2
2, ε(µ(m X )), tan β, m1/2, m0. When m2

1 = m2
2 =

m2
0, the model is called the ‘constrained’ MSSM or CMSSM.

Since R = +1 for all particles in the standard model and R = −1 for all
of their supersymmetric partners (sparticles), it is easy to see that the lightest
supersymmetric particle (LSP) must be stable. To be a WIMP candidate, the LSP
must also be a colour-singlet and electrically neutral and there are relatively few
sparticles with these properties. One posiibility is a sneutrino ν̃. However, this
possibility has been excluded. An accelerator-based limit from the ‘invisible’
width of the Z boson requires m ν̃ � 44.7 GeV [17] but, in this case, direct relic
searches in low-background experiments require m ν̃ � 20 TeV [18]. Another
possibility that arises in supergravity models is the gravitino, which is essentially
undetectable. Also, as we saw in section 6.3, gravitino dark matter might raise
theoretical problems that supersymmetry is supposed to have solved. However, in
most supergravity models, the gravitino is not the LSP and is unstable. The most
popular candidate by far is that the LSP is a neutralino [19].

6.5 Neutralino dark matter

There are four neutralinos χ0
n (n = 1, 2, 3, 4) in the MSSM, each of which is a

linear combination of the four R = −1 Majorana fermions: the Wino W̃ 3, the
partner of the SU(2)L gauge boson; the Bino B̃, partner of the U(1)Y gauge
boson; and the two neutral Higgsinos H̃u and H̃d . Thus,

χ0
n = N1n B̃ + N2n W̃ 3 + N3n H̃u + N4n H̃d (n = 1, 2, 3, 4) (6.50)
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and the coefficients Nin (i = 1, 2, 3, 4) are the normalized eigenvectors of the
neutralino mass matrix

Mχ =


M1 0 −m Z cβsW m Z sβsW

0 M2 m Z cβcW −m Z sβcW

−m Z cβsW m Z cβcW 0 −µ

m Z sβsW −m Z sβcW −µ 0

 (6.51)

where cβ ≡ cos β, sβ ≡ sin β, cW ≡ cos θW and sW ≡ sin θW . The mass
eigenvalues are conventionally labelled in ascending order, so χ0

1 is the lightest
neutralino and χ0

4 the heaviest. Besides the (known) parameters m Z and θW that
appear in the standard model, the neutralino mass matrix involves four of the
further 63 parameters that specify the (fairly) general MSSM discussed earlier.
These are M1,2, the (soft) masses of the U(1)Y and SU(2)L gauginos, and
the Higgsino mixing parameter µ. In mSUGRA models, (6.46) holds and the
neutralino masses and mixing angles are determined by only three parameters.

The question to be addressed then is whether for certain values of these
limited parameter sets the MSSM has the neutralino χ0

1 as the LSP and, if so,
whether the predicted relic density is consistent with the observational data (6.14).
To answer the latter question, the cross section for neutralino annihilation must
be calculated in the MSSM and then used to calculate the relic density which
is compared with the observational data on cold dark matter. Subtracting the
baryonic contribution �b from the total matter contribution �m in (6.14) gives
the 2σ range for the cold dark matter density satisfying

0.094 < �C DMh2 < 0.129. (6.52)

Before discussing these calculations, we should note that a precise determination
of the relic density requires the solution of the Boltzmann equation governing the
evolution of the number density nχ . The estimate (6.27) is a fairly good estimate
when σA|v| is approximately constant, independent of v. Since the neutralinos
are non-relativistic, we may generally expand the annihilation cross section as

σA|v| = a + bv2 + · · · (6.53)

where the a term receives contributions only from s-wave scattering, the b-term
from s- and p-waves, and so on. If a � b, then σA|v| is indeed approximately
constant. However, as we shall see, this is often a poor approximation because
the dominant annihilation channel has the s-wave suppressed because of CP-
invariance considerations. Thus, the p-wave is dominant and the estimate (6.27) of
the relic abundance is a poor approximation. The true abundance can be computed
by a numerical integration of the Boltzmann equation but an improved analytical
approximation can also be found by solving in both the early- and late-time limits
and then matching the two solutions near freeze-out. The result is [20]

�χ,0 = Yχ,0
s0

ρc
mχ (6.54)
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with the present neutralino abundance Yχ,0 given by

Yχ,0 = 3.785√
g∗,Tdecm P mχ

(
mχ

Tdec

)
1

a + 3(b − a/4)Tdec/mχ

(6.55)

and the freeze-out temperature satisfying

mχ

Tdec
= ln[0.0764m P(a+ 6bTdec/mχ)c(2+ c)mχ(g∗,Tdecmχ/Tdec)

−1/2] (6.56)

which can be solved iteratively; c is a numerical constant of order unity
determining when the early- and late-time solutions are matched: c � 1

2 typically
gives a 5–10% precision. In special circumstances this estimate can be wrong
by factors of two or more. These are (i) when the annihilation occurs near an
s-channel pole; (ii) when the annihilation occurs near a mass threshold; and (iii)
when there is ‘co-annihilation’, i.e. when there is another particle (χ ′) (e.g. a
squark) with a mass that only slightly exceeds mχ , and the χ can be converted to
a χ ′ via scattering from standard model particles. If the annihilation cross section
for the χ ′s is larger than that of the χs, then the abundance of both is controlled
by the annihilation of the heavier and more strongly interacting particle. These
special cases are important in practice and allow certain regions of the MSSM
parameter space that would otherwise be forbidden.

The coefficients a and b in (6.53) are bounded above by partial-wave
unitarity arguments, with the bounds being of order mχ , essentially on
dimensional grounds. This leads to a model-independent lower bound on the
relic abundance [21]

�χ,0 �
( mχ

200TeV

)2
. (6.57)

Using the upper bound in (5.22) then gives mχ � 100 TeV. Of course,
in the MSSM models with which we are concerned, the cross sections are
proportional to α2

em , so the largest cosmologically acceptable WIMP mass will
be reduced by a factor of αem ∼ 10−2 from this most conservative bound.
Thus, in supersymmetric models, we expect mχ � 1 TeV to be required by the
cosmological constraint.

The calculation of the annihilation cross section in the MSSM is
straightforward in principle but quite complicated in practice and we shall only
comment on the salient features. The most important channels for neutralino
annihilation are those that appear in lowest order (tree-level) perturbation theory,
see figure 6.1. These are annihilation into a pair of fermions

χ0
1 χ0

1 → f f̄ ( f = q, l, ν) (6.58)

and into a pair of bosons

χ0
1 χ0

1 → W+W−, Z0 Z0, W±H∓, Z0 A0, Z0 H 0, Z0h0, H+H−
(6.59)
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Figure 6.1. Feyman diagrams for neutralino annihilation processes: χn is any of the
neutralino or (in the t-channel) chargino states; h is the lightest (neutral) Higgs scalar,
H is the other neutral Higgs or charged Higgs; A is the pseudoscalar; f is a fermion and f̃
is the corresponding sfermion. (Not all processes are allowed.)
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and all three pairs from A0, H 0, h0.
Analytic expressions for the a terms for all of these processes are compact

but the b terms are very involved [22]. Neutralinos are Majorana fermions and
are, therefore, their own antiparticles. This means that, in an s-wave state, the two
neutralinos must have their spins oppositely directed because of Fermi statistics.
Therefore, if the neutralinos annihilate to a fermion ( f )–antifermion pair ( f̄ ),
then f and f̄ must also have their spins antiparallel, and this implies that the
amplitude acquires a factor m f to account for the helicity flip. Another way
to see this is to note that the initial s-wave χ0

1 χ0
1 state has C P = −1, so CP-

invariance requires that the final state also has C P = −1. Annihilation into light
fermion pairs will always be kinematically allowed but the previous argument
shows that the s-wave contribution to, and therefore the a term in, the annihilation
cross section is proportional to m2

f /m2
χ . Thus, annihilation into light quarks and

leptons is negligible compared with annihilation into c, b and t-quark pairs: the
latter occurs only when mχ > mt and dominates all other channels when it is
open. CP-invariance also affects other amplitudes. For example, annihilation
into Higgs bosons can be important when such channels are open. However, the
s-wave amplitudes for the final states h0h0, H 0H 0, H 0h0, A0 A0, H+H− are
identically zero because of CP-invariance: the same is true of the Z0 A0 final
state.

The allowed parameter space is restricted by other data [23] besides the
cosmological bounds (5.22). Specifically, the LEP bound on mh , and b → sγ
data, both force the parameter m1/2 to larger values, while the BNL E821
measurement of the g− 2 factor of the muon [24] favours relatively low values of
m0 and m1/2, at least for µ > 0—the actual bounds are dependent on tan β. There
is also the requirement that the neutralino is the LSP and that the parameters allow
radiatively driven electroweak symmetry breaking. The current position seems to
be [25] that the MSSM can simultaneously satisfy all of these constraints. In the
most constrained model, the CMSSM, there is a ‘bulk’ region in the (m1/2, m0)

plane with relatively low values of m0 and m1/2 in which both the cosmological
and the non-cosmological constraints are satisfied, see figure 6.2 taken from [25].
In this region, supersymmetry is relatively easy to detect at colliders. The
constraints deriving from the precision WMAP data have substantially reduced
the size of this region. The bulk region is essentially defined by using the
expression (6.54) and, in this region, the neutralino is essentially the Bino (B̃),
i.e. N10 � N20, N30, N40 in (6.50). In this case the annihilation proceeds mainly
via t-channel sfermion exchange.

Extending from the bulk region to larger values of m1/2 is a co-annihilation
‘tail’, where the neutralino LSP is almost degenerate with the next-to-lightest
sparticle, usually the stau τ̃ . At larger values of m0, close to the region where
radiative electroweak symmetry breaking is no longer possible, there is a ‘focus-
point’ region in which the neutralino has a larger Higgsino component, i.e. N30 or
N40 in (6.50) are non-negligible. Lastly, when both m0 and m1/2 are large there
may be a ‘funnel’ where rapid direct-channel annihilations via the A and H Higgs
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Figure 6.2. The ranges of mχ allowed by cosmology and other constraints, for (a) µ > 0
and (b) µ < 0. Upper limits without (upper solid line) and with (dashed line) the gµ − 2
constraint are shown for µ > 0: the lower limits are shown as lower solid lines. Note the
sharp increases in the upper limits for tan β � 50, µ > 0 and tan β � 35, µ < 0 due to
the rapid-annihilation funnels. Also shown as dotted lines are the ẽL and χ± masses at the
tips of the co-annihilation tails.
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boson poles occurs. For µ > 0, the neutralino mass is constrained to satisfy

108 GeV � mχ � 370 GeV (6.60)

with the minimum value occurring at tan β = 23. For µ < 0, there is no
compatibility with the g − 2 data when the LEP data are used Thus, µ > 0 is
clearly favoured but if the g − 2 data are excluded the corresponding bounds are

160 GeV � mχ � 430 GeV. (6.61)

It is beyond our scope to discuss the status of the CMSSM in any further detail
and the interested reader is referred to [25, 26]. The main point is that the MSSM
and even the CMSSM are consistent with all current data and have a neutralino
with mass in the range (6.60). In the absence of new theoretical motivation for
particular values of the parameters, the most urgent need is for more experimental
data. One way to obtain this is to detect neutralino dark matter and to ascertain its
properties.

6.6 Detection of dark matter

The most direct signal for neutralino dark matter would be to observe its scattering
from nuclei in a detector. By fitting both the luminous and dark matter to the
measured rotation curve in our galaxy, the dark matter density at the position of
the solar system is found to be of order 0.3–0.7 GeV cm−3. If the halo of the
Milky Way consists of WIMPs, then this means that hundreds to thousands of
them pass through every square centimetre each second. For a typical neutralino
with mχ ∼ 100 GeV scattering from a xenon nucleus with mXe ∼ 130 GeV,
with a typical WIMP speed v̄ ∼ 270 km s−1, the nuclear recoil energy is below
100 keV (exercise 3). This energy is transferred to atomic electrons and produces
detectable ionization. With a typical MSSM cross section, assuming coherent
interaction with the xenon nucleus, this gives an event rate of less than 1 kg−1

day−1. This is about 106 times lower than the ambient rate from background
recoils due to gammas from the surrounding natural radioactivity. Nevertheless,
it is feasible to distinguish between the two because the rate of energy loss
with distance (dE/dx) is a factor of 10 lower for nuclear recoils. However,
any background neutrinos, produced by cosmic-ray muons for example, produce
nuclear recoils that are indistinguishable from WIMP recoils. Thus, the detector
must be shielded from the muons by placing it deep underground. The velocity
of the earth through the galactic halo varies during the year as the earth orbits
the sun. This leads to an annual modulation of the dark matter event rate, with a
maximum each year on 2nd June ± 1.3 days when the earth’s motion is aligned
with the sun’s motion around the galactic centre and a minimum six months later.
Due to the high inclination of the earth’s orbital plane, this only amounts to a 5–
7% change in the mean recoil rate. This annual modulation is the signature sought
by all of the current detectors (DAMA, ZEPLIN-I, EDELWEISS and CDMS).
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However, it is possible that the much larger low-energy background might be
subject to other modulating effects. The direction of the WIMP ‘wind’ felt by
the detectors is strongly peaked in the direction opposite to the solar motion, so
the recoil directions will be strongly peaked in the same direction. If observed,
this feature, combined with the annual modulation, would be the most convincing
demonstration of the existence of WIMPs.

6.6.1 Neutralino–nucleon elastic scattering

If WIMPs solve the dark matter problem, they must have some small but finite
coupling to ordinary matter—otherwise, they would not have annihilated in the
early universe and would be overabundant today. By crossing symmetry, the
amplitude for WIMP annihilation into a quark–antiquark pair is related to the
elastic scattering of the WIMPs by quarks. Thus, we expect that WIMPs will
have a small coupling to nuclei and may, therefore, be detectable by nuclear
scattering. The calculations are considerably simplified because the WIMP
velocity (vχ/c ∼ 10−3) is extremely non-relativistic. This feature also simplifies
the conversion of the scattering cross sections from quarks into the scattering
cross sections from the nuclei making the detector. In the non-relativistic limit,
the axial vector current χ̄0

1 γµγ5χ
0
1 is just the WIMP spin and it is coupled to the

nucleon spin. Since the neutralino is a Majorana fermion, it has no vector current
χ̄0

1 γµχ0
1 = 0. So the only other possible term in the effective interaction is the

scalar χ̄0
1 χ0

1 which couples to the mass of the nucleus—in the non-relativistic
limit the ‘tensor’ current reduces to the scalar.

At tree level, the axial vector (spin) interaction receives contributions from t-
channel Z boson and s-channel squark exchange, while the scalar interaction gets
contributions from t-channel Higgses H, h as well as s-channel quark exchange.
See figure 6.3. Since the lightest Higgs might be considerably lighter than the
lightest squarks, its contribution to the scalar interaction could be significant if
the neutralino state (6.50) has a substantial Higgsino component. Because it
is proportional to the mass number A of the nucleus, the scalar amplitude will
dominate for heavy nuclei. For a neutralino that is a pure Bino B̃, this occurs for
A � 20 in the large squark mass limit and this is confirmed by numerical surveys
of the supersymmetric parameter space where scalar dominance for A � 30 is
almost always found [27].

It is of interest to examine the theoretical implications for the direct detection
experiments of restricting the parameters of the CMSSM to the region allowed
by the cosmological and other constraints. This programme has so far been
undertaken [28] only in the case that A = 0 . The LEP lower limit on mh and
the b → sγ data provide upper limits on the cross sections, while the g − 2 data
provide lower limits, at least if µ > 0. In that case, the overall conclusion is that
the spin-independent cross section σS I satisfies

2× 10−10 pb � σS I � 6× 10−8 pb (6.62)
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Figure 6.3. Lowest-order Feynman diagrams for neutralino–quark elastic scattering: (a)
and (b) contribute to the spin-dependent amplitude; (b) and (c) contribute to the scalar
amplitude.

and for the spin-dependent cross section, σS D,

2× 10−7 pb � σS D � 10−5 pb (6.63)

If the g − 2 constraint is dropped and µ < 0 is tolerated, then there is no lower
limit on σS I . In general, it is found that σS I is relatively large in the bulk region
but falls off in the co-annihilation tail. There is strong cancellation in σS I when
µ < 0.

6.6.2 WIMP annihilation in the sun or earth

If the galactic halo is composed of neutralino WIMPs, the WIMPs have a small
probability of elastic scattering with the sun and/or the earth. The WIMPs that
scatter to a velocity smaller than the escape velocity become gravitationally bound
to that body1. Once captured, the WIMPs undergo further scattering from the
elements of that body and settle to the core in a relatively short time period.
Thus, the sun and earth are like (inefficient) cosmological vacuum cleaners,
constantly sucking in WIMPs that are then stored in their cores. WIMPs that
have accumulated in this way can annihilate, essentially at rest, to produce
standard model particles most of whose decay products are absorbed without
any observable consequences. However, some of the decay products include
energetic muonic neutrinos (νµ, ν̄µ) that can pass through the sun and earth and
1 For the sun, the escape velocity at the centre is vc = 1354 km s−1 and at the surface vs =
795 km s−1; for the earth vc = 14.8 km s−1, vs = 11.2 km s−1.
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be detected in astrophysical neutrino detectors on earth. The most promising
technique for detection is via the observation of upward-moving muons produced
by charged-current interactions of the muonic neutrinos with the rock below the
detector. Neutralinos annihilate almost always to two-body final states, each
carrying energy mχ , and the decays of these can produce muonic neutrinos with
energies between mχ/3 and mχ/2. The lower bound on the neutralino mass is
conservatively 40 GeV, so the energy of the muonic neutrinos is several GeV.
The only background is from atmospheric neutrinos produced by cosmic-ray
spallation. This is a well-modelled and easily subtracted background.

The first step in calculating the WIMP-induced neutrino rate is to determine
the annihilation rate �A in the sun (or earth). This is given by

�A = 1
2 CA N2 (6.64)

where N is the number of WIMPs in the sun (or earth) and

CA = 〈σA|v|〉 V2

V 2
1

. (6.65)

〈σA|v|〉 is the annihilation cross section multiplied by the relative velocity in the
limit of zero relative velocity, i.e. the a term of (6.53), and V1,2 are effective
volumes

Vj ≡
(

3m2
P T

2 jmχρ

)3/2

(6.66)

where T and ρ are the core temperature and density respectively. The time
evolution of N is given by

Ṅ = C − CA N2 (6.67)

where C is the WIMP accretion rate and the second term arises because of the
depletion caused by annihilations. The two processes equilibriate when Ṅ = 0
and then

�A = 1
2 C. (6.68)

In other words, the annihilation rate is entirely determined by the accretion rate.
One might wonder whether enough time has elapsed for equilibrium to become
established but, in all cases of interest, it turns out that there has been [29].

Thus the next step is to calculate the capture rate C , which is, in turn,
determined by the elastic scattering of the WIMPs with the nuclei of the sun
(or earth). We have already noted that there are just two channels for elastic
scattering: axial (spin-dependent) and scalar (spin-independent). The former
contributes only to WIMP capture by the sun, since a negligible fraction of the
earth’s mass is in nuclei with spin. The latter contributes to capture by both the
sun and the earth.

It is beyond our scope to give any details of these calculations. We merely
note that it is relatively straightforward to estimate the axial contribution in terms
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of the elastic (axial) scattering cross section σ0 for WIMPs on protons. The result
is

Csun
ax = 1.3× 1025 s−1

(
1 GeV

mχ

)( σ0

10−40 cm2

)
S

(
mχ

mN

)
(6.69)

assuming a halo density of 0.3 GeV cm−3 and a dark matter velocity dispersion
of v̄ ∼ 270 km s−1. S is a suppression factor with the properties

S(1) = 1 S(x) ∼ 3〈v2
esc〉

2v̄2x
as x →∞. (6.70)

The capture rate by the scalar interaction is much more complicated and requires
the scattering cross section from several nuclei. We refer the interested reader
to [30].

Once the capture rate and, hence the annihilation rate is known, the
calculation of the flux of high-energy neutrinos is straightforward. It is given
by (

dφ

dE

)
i
= �A

4π R2

∑
F

BF

(
dN

dE

)
F,i

(i = νµ, ν̄µ) (6.71)

where R is the sun–earth distance, or the radius of the earth, for neutrinos from the
sun or earth respectively, BF is the branching ratio for annihilation into channel F
and (dN/dE) f,i is the differential energy spectrum for neutrinos of type i at the
surface of the sun (or earth) expected in channel F at the core of the sun (or earth).
The cross section for the production of a muon via a charged-current interaction
is proportional to the neutrino energy, and the range of the muon in the rock is
roughly proportional to the muon energy. Thus, the rate for the observation of
neutrino-induced through-going muons is proportional to the second moment of
the neutrino energy spectrum:∫ (

dN

dE

)
F,i

E2 dE . (6.72)

For neutralinos giving a relic density in the range (5.22), this gives a rate for
upward muons of

�ax
detector = 1.65× 10−4 m−2 yr−1

( mχ

1 GeV

)
S

(
mχ

mN

)
(6.73)

for WIMPs with only an axial coupling. S is the suppression factor occurring
in (6.69). As already noted, this is relevant only for neutrinos from the sun. The
results of the analogous calculation for WIMPs with only a scalar coupling cannot
easily be summarized. Suffice it to say that fluxes as high as 10−2 m−2 yr−1, the
current experimental upper bound on the rate, and of at least 10−4 m−2 yr−1, the
expected sensitivity of the next generation of km2 detectors, can be obtained for
parameters giving 10 GeV � mχ � 1 TeV. If mχ � 80 GeV, the signals from the
sun and earth are of comparable strength and the earth’s signal is greater when
mχ � 80 GeV, see figure 34 in [31].

Copyright © 2004 IOP Publishing Ltd



192 Supersymmetric dark matter

6.6.3 WIMP annihilation in the halo

The foregoing proposals for observing WIMPs are the most promising techniques
currently available. However, WIMPs have other potentially observable effects.
In particular, their annihilation in the galactic halo can produce anomalous cosmic
rays [32] which may be distinguishable from the familiar background cosmic rays.

These background cosmic rays occasionally include antiprotons produced
by spallation of primary cosmic rays on interstellar hydrogen atoms. The flux
of such antiprotons cuts off at energies below about 1 GeV, essentially for
kinematic reasons because the primary cosmic-ray spectrum falls rapidly as
the energy increases. WIMP annihilation, in contrast, can easily produce low-
energy antiprotons as a result of hadronization of the decay products. Since the
background production of antiprotons with energies in the range 100–1000 MeV
is well understood, it is possible, in principle, to observe the anomalous
antiprotons, provided that the WIMP mass is not too large.

Another signal could be the observation of ‘line’ source positrons arising
from the direct annihilation of WIMPs into an electron–positron pair. Of
course, there are other sources of positrons arising from the showering of
other annihilation products but these will have a broad energy spectrum that is
indistinguishable from the background. Although propagation through the galaxy
would broaden the line, there are no other sources of such a peak in the energy
range 10–1000 GeV. Observation of such a peak would give a direct measurement
of the WIMP mass. Unfortunately (Majorana) neutralino annihilation into an
e+e− pair is helicity suppressed, as previously noted. However, if the neutralino
state (6.50) contains a significant Higgsino component, the annihilation process
χ0

1 χ0
1 → W+W− followed by W+ → e+νe will produce a positron with energy

peaked around mχ/2.
Similarly, WIMP annihilation in the halo into two photons would produce

a monochromatic line at an energy of the WIMP mass. Of course, since they
are electrically neutral, there is no direct coupling to photons but equally their
(weak) interaction with other matter generates a small but non-zero cross section
for annihilation into two photons via a loop diagram. Estimates of the cross
section suggest that the signal would be barely observable with current detectors.
However, cold dark matter predicts cusps in the density in the cores of galaxies. It
is doubtful whether such cusps are compatible with observations but a (residual)
peak in the density would assist the generation of a visible signal.

6.7 Exercises

1. Verify that the abundance �X,0 of cold dark matter X is given by (6.22) and,
hence, check the estimate (6.28).

2. Show that the increase in temperature following reheating after the gravitinos
decay is given by (6.43) and, hence, derive the bound (6.44) on m3/2.
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3. Show that a neutralino with mass mχ ∼ 100 GeV scattering from a xenon
nucleus with mXe ∼ 130 GeV, with a typical WIMP speed v̄ ∼ 270 km s−1,
produces a nuclear recoil energy which is below 100 keV.

6.8 General references

We have found the following article particularly useful in preparing this chapter.

• Jungman G, Kamionkowski M and Griest K 1996 Phys. Rep. 267 195
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Chapter 7

Inflationary cosmology

7.1 Introduction

The inflationary universe scenario was devised by Guth [1] to provide a resolution
to two major puzzles in the standard model of the universe, namely the horizon
and flatness problems. As a by-product, inflation also solves problems associated
with excessive abundances of particle relics. There are two basic versions of
cosmological inflation which we shall refer to as ‘old’ and ‘new’ (or ‘slow-
roll’) inflation. In both versions, the universe undergoes a period of very rapid
expansion driven by a large cosmological constant in the false vacuum. This
period of inflation ends when the universe has evolved to the true vacuum with
zero cosmological constant. In the case of old inflation, the universe supercools
in some high-temperature phase before undergoing a first-order phase transition
to some low-temperature phase. In the case of new inflation, some scalar field
rolls in a very flat region of a potential (where the vacuum energy is large and
positive) and eventually rolls to a minimum of the potential with zero vacuum
energy (cosmological constant).

In the first part of this chapter, we shall discuss old inflation and its successes
and shortcomings. The second part of the chapter contains an exposition of new
inflation (slow roll inflation.) We shall see that, as well as providing a solution to
these cosmological problems, slow-roll inflation is capable of accounting for the
size of the density perturbations in the cosmic microwave background radiation.

7.2 Horizon, flatness and unwanted relics problems

We discuss these three puzzles in the standard model of cosmology in turn.

7.2.1 The horizon problem

The cosmic microwave background radiation (CMBR) is very homogeneous.
However, in the standard model, the present universe consists of many regions
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which were causally disconnected up to the time of recombination of electrons
and photons after which the photons we now observe as the cosmic microwave
background underwent no further scattering. The puzzle is how these causally
disconnected regions could have ended up with the same microwave background
temperature.

We can estimate how many causally disconnected regions there were at the
time of recombination. From (3.117), the proper distance at time t from any point
to the particle horizon is

dH (t) = 2t (7.1)

where we have taken n = 1
2 for a radiation-dominated universe. In particular, at

the recombination time tr ,
dH (tr ) = 2tr . (7.2)

(We are assuming that for most of the time from t = 0 up until tr the universe was
radiation dominated. This is a reasonable approximation because the temperature
at which the transition from radiation dominance to matter dominance occurs and
the temperature at which recombination of electrons and protons occurs are well
within an order of magnitude of each other, respectively 0.37 eV and 0.26 eV.)
We need to know how many horizon volumes at time tr have expanded to fill the
presently observable region of the universe (the present horizon volume). Thus,
we need to know the radius of the region at time tr that has expanded to the radius
of the presently observable universe. Let the volume of the observable universe
at the present time t0 be V0(t0) and let the horizon volume at the recombination
time be Vr (tr ). Since RT is constant, because of conservation of entropy,

V0(tr )

Vr (tr )
= V0(t0)

Vr (tr )

R3(tr )

R3(t0)
= V0(t0)

Vr (tr )

(
T0

Tr

)3

(7.3)

In view of (3.117),
V0(tr )

Vr (tr )
=

(
t0
tr

)3 (T0

Tr

)3

(7.4)

With the universe matter dominated from approximately the time of
recombination to the present time, so that

R(t) ∝ t2/3 (7.5)

we have
t ∝ T−3/2. (7.6)

Thus,
V0(tr )

Vr (tr )
�

(
Tr

T0

)3/2

� 3.6× 104 (7.7)

for Tr � 3.0 × 103 K and T0 � 2.73 K. This is the number of horizon volumes
at the recombination time that expanded to fill the presently observable universe
(the present horizon volume.) As advertised, this is a large number.
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7.2.2 The flatness problem

The present value of �, the ratio of the density of the universe to the critical
density, is not more than one order of magnitude different from 1. Since, as in
section 1.3,

�− 1 = k

H 2 R2
(7.8)

the departure of � from 1 is a measure of the extent to which the universe is
curved (when k 
= 0). The value of � varies with time and we can estimate how
close to 1 it would have had to have been at earlier times to be as close to 1 as
it is today. The conclusion we shall come to shortly is that � would have been
extraordinarily close to 1 in the early universe to be consistent with the present
value of �.

First, let us study the way in which � − 1 varies as the scale factor of the
uuniverse R(t) changes. Recalling that

� = ρ

ρc
= 8πGN

3H 2 ρ (7.9)

and combining with (7.8), we recover the Friedmann equation

H 2 R2 = 8π

3
GN ρR2 − k. (7.10)

Assuming a radiation-dominated universe, ρ is proportional to T 4 and, for entropy
conservation, RT is constant. Thus, we can write

ρ = a R−4. (7.11)

Then, using (7.10),

�− 1 = k
8
3πGN a R−2 − k

. (7.12)

It is clear, therefore, that � → 1 as R → 0. However, as the universe expands,
� → 0 as R → ∞ if k = −1, and � → ∞ as R → Rmax = ( 8

3πGN a)1/2 if
k = 1.

Next, let us estimate the value of �− 1 in the early universe. Write

ρ = ξT 4 (7.13)

where, from (2.22),

ξ = π2

30

(
NB + 7

8
NF

)
. (7.14)

Then, from (7.12), (7.11) and (7.13),

�− 1 = k
8
3πGN ξT 4 R2 − k

� k̂
8
3πGN ξT 2

(7.15)
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for large values of T , where

k̂ = k

R2T 2 . (7.16)

In an adiabatically expanding universe, the constancy of RT implies that k̂ is a
(dimensionless) constant. We can estimate k̂ from (7.15), (7.13) and (7.10) as

k̂ = 8πGN ρ

3T 2
� (�0 − 1)H 2

0

T 2
0

(7.17)

where H0 and T0 are the present values: H0 � 1.54 × 10−42 GeV and T0 �
2.73 K � 2.35× 10−13 GeV. For �0 differing from 1 by no more than an order
of magnitude,

|k̂| � 2× 10−58. (7.18)

We are left with an unnaturally small number for |k̂| (unless k is strictly zero).
This bound on |k̂| can now be translated into a bound on |� − 1| at early

times. By way of illustration, we take the value of ξ obtained in an SU(5)

supersymmetric GUT and estimate the value of |� − 1| at the grand unification
scale and at the Planck scale. In this case, as in section 2.7, NB + 7

8 NF = 675
4 and

so

ξ = 55.5. (7.19)

Recalling that GN = m−2
P , where the Planck mass m P = 1.22× 1019 GeV, we

get the bound at the grand unification scale, Tc = 2× 1016 GeV,

|�− 1| � 1.66× 10−55 (7.20)

and at the Planck scale

|�− 1| � 1.66× 10−61 (7.21)

Again, these are unnaturally small numbers (unless k is strictly zero). The
problem is to find a way that conditions in the early universe could have produced
such small numbers.

7.2.3 The unwanted relics problem

It is not infrequently the case that particles produced in the early universe are
calculated to have unacceptably large relic densities in the present universe, either
because they provide too large a contribution to the mass of the universe or for
other reasons. For example, as discussed in section 3.10, unacceptably large
monopole densities are produced in some GUTs. A mechanism is needed to dilute
these densities to acceptable values.
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7.3 Old inflation

A solution to all three problems discussed in the last section is for there to have
been a period of very rapid expansion of the universe (cosmological inflation)
during which the scale factor of the universe grew by a large amount. We shall
discuss shortly how much expansion is sufficient to solve these problems. A
simple mechanism to produce the required expansion is for the universe to have
supercooled in a false vacuum prior to undergoing a first-order phase transition to
the true vacuum in the way described in section 2.9. In that case, a large positive
vacuum energy, constant until the phase transition is completed, can drive a period
of expansion in a de Sitter universe. After some supercooling has occurred, the
vacuum energy density in the Friedmann equation will dominate the radiation
energy density and the curvature term, and the Friedmann equation simplifies to

H 2 = Ṙ2

R2
= 8πGN

3
V (7.22)

where V is the vacuum energy density in the false vacuum. This is equivalent to
the de Sitter equation with cosmological constant

� = 8πGN V = 8πm−2
P V . (7.23)

Moreover, the Hubble constant during the inflationary era has a constant value
given by

H 2 = 1
3�. (7.24)

During cosmological inflation, the scale factor of the universe grows
exponentially

R(t) ∝ exp

(√
�

3
t

)
= eHt . (7.25)

The exponential expansion means that by the time the transition to the true
vacuum occurs, the scale factor of the universe may have increased by many
orders of magnitude. The phase transition will be completed by the formation
of bubbles of the true vacuum, as discussed in section 2.9. Once formed, the
bubbles will tend to coalesce and the energy stored in the walls of the bubbles
will be released resulting in the universe reheating. Thereafter, the universe
will evolve as a (in the first instance) radiation-dominated Friedmann–Robertson–
Walker (FRW) universe. However, the initial conditions for the evolution of the
FRW universe will have been drastically modified by the period of inflation. If
sufficient inflation has occurred, the various problems discussed in the previous
section will be solved. We now estimate how much inflation is required for this
purpose.

Consider first the horizon problem. This problem will be resolved if the
presently observable universe lies in a single region which was causally connected
at the time of decoupling of photons from matter (the recombination time), rather
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than containing of the order of 3.6×104 such regions as in section 7.2. The usual
expression (3.117) for the distance to the particle horizon does not hold during
the period of cosmological inflation. Instead,

dH (t) = R(t)
∫ t

0

dt ′

R(t ′)
(7.26)

with R(t) given by (7.25) if we neglect the period of growth of dH (t) during the
period of radiation-dominated expansion which preceded cosmological inflation.
Thus, during the inflationary period,

dH (t) = H−1(eHt − 1). (7.27)

The exponential growth of dH (t) during this period means that, once the universe
has reheated to around the critical temperature after the phase transition has
been completed, the horizon volume is exponentially greater than it was at this
temperature prior to inflation. (Because the energy density in the false vacuum
is of order T 4

c and the radiation density in the FRW universe is given by (2.22),
reheating to a temperature of order Tc occurs.) Thus, after the subsequent period
of radiation-dominated expansion in the FRW universe, the size of the horizon
volume at t = tr is exponentially greater than in the standard model of cosmology.
It is then easy for one horizon volume at t = tr to contain many times over the
volume which will expand to the presently seeable universe.

Consider next the flatness problem. Let T = Tc be the temperature at
which the low-temperature minimum of the effective potential (the true vacuum)
becomes the absolute minimum. When the phase transition is first order, the
universe will supercool to a temperature T = Ts before the phase transition is
completed by tunnelling out of the false vacuum, as described in section 2.9,
and reheating of the universe to a temperature T = TR occurs, with TR ∼ Tc.
The period when supercooling is occurring is a period of non-adiabatic expansion
which modifies the discussion of the flatness problem given earlier. The flatness
problem was cast in section 7.2 as the unnatural smallness of |�−1| = |k/H 2 R2|
at early times, e.g. at the (supersymmetric) grand unification scale. During
inflation, assumed to occur at that scale, H 2 is given by (7.24) and is constant.
At the same time, R grows exponentially. In (7.20), |�− 1| was of order 10−55.
Thus, if R2 grows by more than about 55 orders of magnitude during inflation,
we end up with a ‘natural’ value of |� − 1| of order 1 at the supersymmetric
grand unification scale. It is usual to measure inflation in terms of e-folds (one
e-fold being growth of R by a factor of e). In terms of e-folds, what we require to
overcome the flatness problem is around 64 e-folds of inflation1. This is sufficient
to solve the horizon problem discussed above.

Finally, turning to the unwanted relics problem, let us consider, for
definiteness, the magnetic monopole problem. In section 3.10, the excessive
1 The WMAP data which suggests that |�0−1|may be two orders of magnitude less than 1 indicates
66 e-folds may be nearer the mark. This makes little difference and we shall use 64 e-folds throughout.
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magnetic monopole contribution to the predicted density of the universe today
derived from the size of the ratio of the monopole number density to the entropy
density at the time of the grand unified phase transition at which the monopoles
were produced or, equivalently, from the size of the ratio of the number of
monopoles to the entropy. The problem can be solved if a great deal of entropy is
generated by inflation.

During supercooling, the entropy does not change. However, the non-
adiabatic reheating results in increased entropy. The entropy density prior to
supercooling is of order T 3

c . If the reheating temperature TR ∼ Tc, the entropy
density is still of this order after reheating. However, because the volume of
any region has been inflated by the inflation of R3, the entropy in that region
has increased by a factor of e3H�t , where �t is the duration of the period of
exponential expansion. If there is sufficient inflation to solve the flatness problem
(about 64 e-folds of inflation), then the entropy increases by a factor of 2.4×1083.
In section 3.10, we found that for the case of a supersymmetric grand-unified
phase transition, �M h2 was 18–19 orders of magnitude greater than the predicted
upper bound for �h2 (and a few orders of magnitude more in the case of a first-
order phase transition). Since the entropy generation resulting from inflation
reduces �Mh2 by 83 orders of magnitude, the relic monopole density today is
insignificant. A similar discussion applies to other particle relics.

For all its successes, old inflation has a fatal flaw. It is not possible to make
a ‘graceful exit’ [2] from the period of inflationary expansion in a supercooling
de Sitter universe to a reheated FRW universe. The problem arises because the
phase transition is completed in the way described in section 2.9 by the formation
of bubbles of the true vacuum inside the false vacuum. In the first instance, the
vacuum energy of the de Sitter phase emerges as energy in the bubble walls. For
the universe to thermalize, it is necessary for the bubble walls to undergo many
collisions with other bubble walls. The trouble is that, on the one hand, sufficient
inflation requires the nucleation rate for the true vacuum to be sufficiently low
to allow a long period of supercooling. On the other hand, if bubbles of true
vacuum are to form sufficiently rapidly for the bubbles to overlap and collide in
an expanding universe, then this same nucleation rate needs to be sufficiently high.
It turns out that these two requirements cannot be reconciled. More precisely, it
is found that for nucleation rates low enough for sufficient inflation the universe
always consists of clusters of bubbles of true vacuum with a few bubbles in each
cluster surrounded by false vacuum.

7.4 New inflation

It is possible to retain the successes of old inflation while avoiding the graceful
exit problem in an alternative formulation of cosmological inflation referred to as
‘new’ inflation [3–5] or ‘slow-roll’ inflation. The graceful exit problem derived
from the slow rate of bubble formation at a first-order phase transition when
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Figure 7.1. Slow-roll inflation. The slow-roll region is between φi and φ f .

the nucleation rate was sufficiently low to allow the universe to remain in the
false vacuum long enough for sufficient inflation to occur. In new inflation,
the inflationary period begins with the scalar field (expectation value) φ, the
‘inflaton’, which, for the time being, we shall take to be real, in a region of the
effective potential V (φ) which is very flat. The scalar field may have reached
this region by tunnelling through a barrier between a false vacuum and the true
vacuum or by the false vacuum having ceased to be a local minimum as the
temperature dropped. The scalar field is then assumed to roll slowly down the the
flat region of the potential. We shall discuss the scalar field dynamics involved
shortly. While this process is occurring, the value of the potential is positive
and can drive inflation. If V (φ) is sufficiently flat in the relevant region, the
inflationary process can last long enough to solve the cosmological problems
discussed earlier. Eventually, φ reaches a steeper region of the potential, descends
more rapidly towards the absolute minimum of V (φ) with V = 0, overshoots
and starts to oscillate about the absolute minimum. Quantum mechanical particle
creation damps the oscillation and converts the vacuum energy into the energy of
particles. Thermalization of the emitted particles creates a radiation-dominated
FRW universe. The whole process is displayed in figure 7.1. We shall now discuss
each stage of the process in more detail.

To study the slow-roll stage, we require the equation of motion for (the
expectation value of) the scalar field φ. The Lagrangian density for a (real) scalar
field with effective potential V (φ) is

� = 1
2∂µφ∂µφ − V (φ). (7.28)

(Then the action is S = ∫
d4x

√−g�.) One way of deriving the equation of
motion is as the covariantized Euler–Lagrange equation for this field, namely

Dµ(∂µφ) = −V ′(φ) (7.29)
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with the covariant derivative defined by

DλV µ = ∂λV µ + �
µ
λρV ρ (7.30)

for any 4-vector V µ. Assuming a homogeneous field φ, so that the spatial
gradients are zero,

∇φ = 0, (7.31)

the Euler–Lagrange equation reduces to

φ̈ + �i
i0φ̇ + V ′(φ) = 0. (7.32)

With the coefficients of affine connection for the Robertson–Walker metric as in
section 1.2, the explicit equation of motion is

φ̈ + 3H φ̇ + V ′(φ) = 0 (7.33)

where H is the Hubble ‘constant’ (exercise 1). If there is a range of values of
φ for which slow roll occurs, then in that region the motion is dominated by the
‘frictional’ term 3H φ̇ and the φ̈ term is neglected. Then the equation of motion
simplifies to

φ̇ = −V ′(φ)

3H
. (7.34)

We derive the conditions that V (φ) must satisfy to obtain∣∣∣∣ φ̈

3H φ̇

∣∣∣∣� 1. (7.35)

The double time derivative φ̈ may be estimated from (7.34) as

φ̈ = − 1

3H
V ′(φ)φ̇ + 1

3
H−2Ḣ V (φ). (7.36)

An estimate of Ḣ is now required. When the vacuum energy density ρV

dominates over the radiation density and the curvature terms, the Friedmann
equation gives

H 2 = 8πGN

3
ρV = 8π

3
m−2

P ρV . (7.37)

Also, the energy–momentum tensor for the scalar field is given by

Tµν = ∂�

∂(∂µφ)

∂φ

∂xν
− gµν� (7.38)

= ∂µφ∂νφ − 1
2 gµν∂λφ∂λφ + gµνV (φ). (7.39)

For a homogeneous field φ, the vacuum energy density ρV is given by

ρV = T00 = 1
2 φ̇2 + V (φ). (7.40)
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If we assume that the energy density is dominated by the potential energy, then

H 2 = 8π

3
m−2

P V (φ). (7.41)

We shall see shortly that this is a consistent approximation when the effective
potential V (φ) is flat enough to satisfy the conditions for slow roll. Returning to
(7.36) with Ḣ estimated from (7.41), we see that

φ̈

3H φ̇
= − 1

9H 2 V ′(φ)+ 8πm−2
P

54
H−4(V ′(φ))2. (7.42)

To satisfy (7.35), we require that

|V ′(φ)|
9H 2 � 1 (7.43)

and
8πm2

P

54
(V ′(φ))2 H−4 � 1. (7.44)

With H 2 given by (7.41), these slow-roll conditions are

m2
P |V ′(φ)|
V (φ)

� 24π (7.45)

and

m2
P

(
V ′(φ)

V (φ)

)2

� 48π. (7.46)

Slow roll occurs in the range of φ for which V (φ) is flat enough to satisfy these
two conditions.

It can now be seen that, when the slow-roll conditions are satisfied, the
vacuum energy density is dominated by the potential energy. Using (7.34), the
kinetic term in (7.40) is

1

2
φ̇2 = (V ′(φ))2

9H 2
(7.47)

so that, using (7.41) and (7.46),

1
2 φ̇2

V (φ)
= m2

P

96π

(
V ′(φ)

V (φ)

)2

� 1. (7.48)

If the slow roll occurs between times ti and t f , and the value of the scalar
field evolves from φi to φ f during this time, then the amount of inflation,
measured as the number of e-folds, is given by

Ne ≡ ln
R f

Ri
=

∫ t f

ti

Ṙ

R
dt =

∫ t f

ti
H dt . (7.49)
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Thus, when φ̇ is given by (7.34),

Ne = ln
R f

Ri
=

∫ φ f

φi

H
dφ

φ̇
= −

∫ φ f

φi

3H 2 dφ

V ′(φ)
(7.50)

and when the vacuum energy density is dominated by the potential energy, as in
(7.41), the number of e-folds of inflation is

Ne ≡ ln
R f

Ri
= −8πm−2

P

∫ φ f

φi

V (φ)

V ′(φ)
dφ. (7.51)

If we make the approximation

V ′(φ) � V ′(φi )+ V ′′(φi )(φ − φi ) (7.52)

and take
V ′(φi ) � 0 (7.53)

for a flat potential, then

V ′(φ) � V ′′(φi )(φ − φi ). (7.54)

Substituting this into (7.34), we find that

φ − φi � exp

(
−V ′′(φi )

3H
(t − ti )

)
. (7.55)

Then, the motion is slow over a time period

τ ∼ 3H

|V ′′(φi )| (7.56)

and, using (7.49),

Ne = ln
R f

Ri
∼ H τ ∼ 3H 2

|V ′′(φi )| . (7.57)

With H 2 given by (7.41), this gives

ln
R f

Ri
∼ 8πV (φ)

m2
P |V ′′(φi )|

. (7.58)

Thus, when the slow-roll condition (7.45) is satisfied, ln R f /Ri is large and
we get many e-folds of inflation. Equation (7.58) is useful as an initial test of
whether sufficient inflation can occur. The estimate of the number of e-folds of
inflation can be sharpened up by performing the integration in (7.51) over the
region between φi and φ f which are the boundaries of the region in which the
slow-roll conditions are satisfied.

All of this discussion assumes that the motion of φ across the flat region
is that of a classical field. If there are significant quantum fluctuations, φ may
cross the flat region more rapidly and these conclusions may no longer be valid.
We shall see later that, in the de Sitter space of an inflating universe, there are
substantial quantum fluctuations and we need to check that this effect is not
sufficient to invalidate these estimates of Ne . This will be discussed in section 7.6.
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7.5 Reheating after inflation

Eventually, slow roll ends when the inflaton field φ reaches a steeper region of the
potential. The inflaton then descends more rapidly towards the absolute minimum
of the potential, overshoots it and starts to oscillate about the absolute minimum.
Assuming that the inflaton possesses couplings to matter fields, the oscillation is
damped by quantum mechanical particle creation as vacuum energy is converted
into energy of particles [6–9]. Denote the decay rate of the inflaton by �φ . We
shall assume that �φ � Hosc, where Hosc is the value of the Hubble constant when
the slow-roll period ends and the oscillating period begins.

A simple way of introducing the damping by particle emission into the
dynamics of the inflaton is to modify (7.33) to

φ̈ + 3H φ̇ + �φφ̇ + V ′(φ) = 0. (7.59)

Multiplying by φ̇/2 and recalling (7.40) for the vacuum energy density ρV , we
find that

ρ̇V + (3H + �φ)φ̇2 = 0. (7.60)

For simple harmonic oscillations, the average of the kinetic energy over an
oscillation is equal to the average of the potential energy over an oscillation, so
that

1
2 〈φ̇2〉 = 〈V (φ)〉 = 1

2 〈ρV 〉. (7.61)

Averaging (7.60) over oscillations, we write

ρ̇V + (3H + �φ)ρV = 0 (7.62)

where ρV is now understood to refer to the time-averaged quantity. We shall
discuss later in this section the circumstances in which (7.62) is valid.

While t � �−1
φ , neglecting the time between the big bang and the start of

oscillations, the development of ρV is given, to a good approximation, by

ρ̇V + 3HρV = 0 (7.63)

which is identical to the energy conservation equation in a matter-dominated FRW
universe. Thus, we may regard the vacuum energy density as equivalent to a gas
of non-relativistic φ particles. During this period,

ρV ∝ R−3 R ∝ t2/3 and ρV ∝ t−2. (7.64)

When t ∼ �−1
φ , rapid decay of the vacuum energy to emitted particles occurs

and the universe reheats to a temperature TR given by

π2

30

(
NB + 7

8
NF

)
T 4

R = ρV (t = �−1
φ ) (7.65)
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where NB + 7
8 NF = 915

4 for the supersymmetric standard model and 427
4 for the

standard model. If we define a scale M by

M4 ≡ ρV (t = ti ), (7.66)

where ti is the time that slow roll begins, then we still have

ρV (t = tosc) � M4 (7.67)

because ρV � V (φ) during slow roll and V (φ) does not change significantly over
the flat region in which slow roll occurs. The initial value Hosc of the Hubble
constant when the oscillatory period starts is then given by

H 2
osc =

8π

3
m−2

P M4. (7.68)

The time tosc when the oscillatory period starts is then of order

tosc ∼ H−1
osc =

√
3

8π
m P M−2 (7.69)

(or one or two orders of magnitude greater). Then, from (7.64), we see that

ρV (t = �−1
φ )

ρV (t = tosc)
= (�φ tosc)

2 (7.70)

and, using (7.69) and (7.67), we have

ρV (t = �−1
φ ) = 3

8π
(�φm P )2. (7.71)

Consequently, the reheating temperature TR of (7.65) is

TR =
(

45

4π3(NB + 7
8 NF )

)1/4

(�φm P)1/2. (7.72)

Note that this is not, in general, of order M .
This discussion depends upon (7.63) for the time development of the (time-

averaged) vacuum energy density. This is known to be correct for the oscillatory
period if the φ particles decay only into fermions. However, when the φ particles
decay into pairs of bosons φ → χχ , then it is possible for very rapid decay via
parametric resonance to occur [10], a process which generates very large numbers
of χ particles. This is referred to as ‘preheating’. However, the (radiation) energy
density in light χ particles rapidly becomes small compared to the (matter) energy
density remaining in the oscillatory φ vacuum. Thereafter, the reheating process
occurs as before and the estimate of TR is not much altered.
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Since all pre-existing baryon asymmetry will be diluted exponentially by the
inflationary period, the baryon asymmetry we observe now must be generated
after reheating has occurred or during reheating. If the reheating temperature TR

is sufficiently high, then the baryon asymmetry may be produced in the usual way
by the decay of leptoquark bosons in a GUT. Lower reheating temperatures will
suffice if the sphaleron mechanism applies instead. A further possibility is that
the baryon asymmetry is produced by the decay of the oscillating vacuum state
which exists after slow roll has ceased, i.e. by the decay of particles associated
with the inflaton field φ. This is the situation discussed in section 4.6 where all of
the entropy of the universe is produced by the decay of particles whose decay is
also producing the baryon asymmetry. Then the baryon asymmetry is

nB

s
∼ εTR

mφ

(7.73)

where ε is the net baryon number produced by the decay of a scalar particle
associated with φ. There is the weaker requirement that the reheating temperature
should be high enough for nucleosynthesis to occur so that TR should be at least
a few MeV.

7.6 Inflaton field equations

As discussed in section 7.4, estimates of the amount of inflation occurring during
slow roll require that quantum fluctuations in the inflaton field φ̂ do not cause the
flat region of the potential to be crossed too rapidly. We now show that, in the
inflationary universe, 〈φ2〉 grows linearly with time [11–13].

The inflaton field operator may be expanded in terms of plane-wave modes
as

φ̂(t, x) = 1

(2π)3/2

∫
d3k (ψk(t)e

ik·xak + h.c.) (7.74)

where the creation and annihilation operators ak and a†
k obey

[ak, a†
k′ ] = δ(k − k′). (7.75)

For a massless field in a flat FRW space, the field equation

Dµ(∂µφ) = 0 (7.76)

leads to
ψ̈k(t)+ 3H ψ̇k(t)+ R−2(t)k2ψk(t) = 0. (7.77)

With
R(t) = R0eHt (7.78)

during the inflationary expansion and using the variable

η ≡ −R−1
0 H−1e−Ht (7.79)
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the equation for the plane wave mode ψk(t) becomes

ψ ′′k − 3η−1ψ ′k + k2ψk = 0 (7.80)

where the primes denote differentiation with respect to η. The general solution is
given in terms of Hankel functions

ψk(η) =
(π

4

)1/2
η3/2 H [c1(k)H (1)

3/2(kη)+ c2(k)H (2)
3/2(kη)] (7.81)

where k = |k| and the condition

|c2|2 − |c1|2 = 1 (7.82)

follows from the canonical commutation relations for φ̂ and its conjugate
momentum. Retaining only the positive frequency part [13] of ψk(η), for modes
which go through many oscillations in an expansion time, we take

c2(k) = 1, c1(k) = 0 (7.83)

for k � R0 H . Then, for k � R0 H ,

ψk(η) =
(π

4

)1/2
η3/2 H H (2)

3/2(kη) (7.84)

� − (2k)−1/2 Hη[1− i(kη)−1]e−ikη. (7.85)

and

|ψk(η)|2 = H 2

2k3 (1+ k2 R−2
0 H−2e−2Ht ) (7.86)

The quantum fluctuation 〈φ2〉may now be estimated as follows. Because the
modes with wavelengths greater than the horizon (in the sense of the comoving
Hubble length H−1/R(t)) are expected to be responsible for the growth of
〈φ2〉 with time [13], an approximation to 〈φ2〉 is obtained by cutting off the k
integration at k = R0 H eHt . Then, from (7.74) and (7.75),

〈φ2〉 = 1

(2π)3

∫
d3k |ψk(η)|2 (7.87)

and, using (7.86), this gives linear growth in time:

〈φ2〉 � H 3

4π2 t + (constant). (7.88)

It is important for a consistent model of inflation that quantum fluctuations do not
result in 〈φ〉 crossing the flat region of the potential faster than the time required
for semi-classical slow roll across this region. In (7.57), the time to roll across the
flat region (the period of slow roll) was

τ ∼ H−1Ne . (7.89)
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Thus, we require a flat region of width �φ with

(�φ)2 >
H 3

4π2 
τ = 

H 2Ne

4π2 
(7.90)

so that we require

�φ >
H N1/2

e

2π
. (7.91)

We shall see in the example in section 7.8 that there is often a stronger constraint
from the rquirement of obtaining density perturbations of the size found by
COBE.

7.7 Density perturbations

The quantum fluctuations in the inflaton field discussed in the previous section
result in density perturbations [14–16] in the post-inflationary universe, which
may be responsible for galaxy formation. The density perturbations arise because
the quantum fluctuations in φ̂ give φ, i.e. the expectation value of φ̂, slightly
different values in different regions of space. This results in perturbations to the
value of the vacuum energy density.

Central to the discussion of the formation of density perturbations is the fact
that a given comoving wavelength (i.e. a wavelength in units of the scale factor
R(t) of the universe) can start inside the horizon before inflation begins, cross
outside the horizon at some time during inflation, and then cross back inside the
horizon after inflation has ended and a radiation-dominated universe has been
established. (By ‘horizon’ we shall mean here not the particle horizon but the
comoving Hubble length H−1/R(t). This is a measure of the distance light travels
during an appreciable amount of expansion of the universe. Inside of a comoving
Hubble length, causal processes do not feel the expansion of the universe.)) This
behaviour is a consequence of the fact that when R(t) is increasing as a power t p

of t with p < 1, the comoving Hubble length increases with time, whereas when
R(t) is increasing exponentially with time, the comoving Hubble length decreases
with time, while the comoving wavelength is, by definition, constant. (See
figure 7.2.) The (classical) inflaton field perturbation δφ(t, x) may be expressed
in terms of perturbations δφ̃(t, k) of momentum k as

δφ(t, x) =
∫

d3k eik·xδφ̃(t, k) (7.92)

where we have written the complete inflaton field φ(t, x) as

φ(t, x) = φ0(t)+ δφ(t, x) (7.93)

with φ0(t) the homogeneous classical field. Quantum fluctuations δφ̃(t, k)

develop when the comoving scale |k|−1/R(t) is inside the horizon and become
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Figure 7.2. Behaviour of the comoving Hubble length during and after inflation.

‘frozen in’ when this comoving scale crosses outside the horizon, so that it is no
longer subject to causal processes. When this comoving scale crosses back inside
the horizon, the fluctuations reappear as classical density perturbations.

Calculation of δφ̃(t, k) requires a generalization of the equation of motion
(7.33) of the homogeneous classical field φ0(t) to include the spatial dependence
of φ(t, x). Including this dependence (7.29) leads (exercise 2) to

φ̈ − R−2∇2φ + 3H φ̇ + V ′(φ) = 0 (7.94)

where a flat space has been assumed. (Note in passing that had we allowed
φ to have spatial dependence in the discussion in section 7.4, this would have
been damped out rapidly because of the exponential growth of R(t) during the
inflationary period.) Comparing (7.33) for φ0(t) with (7.94) for φ(t, x), we see
that δφ̃(t, k) obeys

¨
(δφ̃)+ 3H ˙

(δφ̃)+ R−2
0 e−2Ht k2δφ̃ + V ′′(φ0)δφ̃ = 0. (7.95)

For slow roll away from a maximum of the potential, we must have

V ′′(φ0) < 0. (7.96)

The perturbations start to grow when the fourth term in (7.95), which is the
destabilizing influence, becomes larger than the third term. Thus, δφ̃(t, k) starts
to grow at a time t∗(k) (where k ≡ |k|) given by

R−2
0 e−2Ht∗k2 = −V ′′(φ0). (7.97)

For t � t∗(k), the third term in (7.95) can be neglected and δφ̃ obeys

¨
δφ̃ + 3H δ̇φ̃ = −V ′′(φ0)δφ̃. (7.98)
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We also know that φ0 obeys (7.33):

φ̈0 + 3H φ̇0 = −V ′(φ0). (7.99)

Consequently,
∂2

∂ t2
(φ̇0)+ 3H

∂

∂ t
(φ̇0) = −V

′′
(φ0i )(φ̇0) (7.100)

so that δφ̃ obeys the same equation as φ̇0 when H is nearly constant, as it will be
during the period of slow roll. Thus, δφ̃(t, k) must be proportional to φ̇0 with a
k-dependent constant of proportionality which we write as −δτ̃ (k):

δφ̃(t, k) = −δτ̃ (k)φ̇0(t). (7.101)

Substituting into (7.93),

φ(t, x) = φ0(t)− δτ (x)φ̇0(t) (7.102)

where

δτ (x) =
∫

d3k eik·xδτ̃ (k). (7.103)

To first order in δτ ,
φ(t, x) = φ0(t − δτ (x)). (7.104)

Thus, the scalar field fluctuations introduce a spatial dependence into the classical
field φ0(t) which is of the form of a spatially-dependent time lag. Also, for
t � t∗, the V ′′(φ0) term may be neglected and δφ̃ is just the quantum fluctuation
of a free massless scalar field in de Sitter space, which is known to be

δφ̃(t, k) = H

4π3/2
(1+ R−2

0 k2 H−2e−2Ht )1/2. (7.105)

In this limit, the equation obeyed by δφ̃(t, k) is identical to (7.77) and δφ̃(t, k)

is the same as |ψk | up to a normalization factor, as can be seen from (7.86).
The normalization is determined by the requirement that δφ̃(t, k) is the rms
fluctuation [14], so that

δφ̃(t, k)2 =
(

k

2π

)3

|ψk |2. (7.106)

Perturbations in a scalar field will produce density perturbations because the
potential energy V (φ) is modified by perturbations in φ. Thus,

δρ = δV = V ′(φ0)δφ̃. (7.107)

A calculation of the evolution of the density perturbations using the formalism
of Olson [14, 17] shows that when the comoving scale |k|−1/R(t) crosses back
inside the horizon,

δρ

ρ
= 4H δτ̃(k). (7.108)
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We may estimate δτ̃ (k) by assuming that both the t � t∗(k) and t � t∗(k)

expressions for δφ̃(t, k) are tolerable approximations for t � t∗(k). Equating
(7.101) and (7.105) at t = t∗(k) gives

δτ̃ (t∗, k) = −H

4π3/2φ̇0(t∗)
(1+ R−2

0 k2 H−2e−2Ht∗)1/2

= −H

4π3/2φ̇0(t∗)
[1+ H−2V ′′(φ0(t

∗))]1/2. (7.109)

When the slow-roll conditions are satisfied,

V ′′(φ0)� H 2 (7.110)

and we have

δτ̃ (t∗, k) � −H

4π3/2φ̇0(t∗)
. (7.111)

Then
δρ

ρ
= −H 2(t∗)

π3/2φ̇0(t∗)
. (7.112)

In practice, t∗(k) is a few Hubble times after the time when the comoving
wavelength k−1 crossed outside the horizon. In evaluating (7.112), we
shall always identify t∗(k) with the horizon crossing time given by k =
R(t∗(k))H (t∗(k)). Then (7.112) is consistent to within a factor of order one with
other, more rigorous, treatments [15, 16].

The COBE observations require that

δρ

ρ
∼ 2× 10−5. (7.113)

This allows us to estimate the energy scale of the inflationary potential V (φ).
Using (7.41) and (7.47), we have

δρ

ρ
∼ m−3

P
V (φ)3/2

V ′(φ)
. (7.114)

Then, using (7.113), it follows that

V (φ)1/4 ∼
(

m P V ′(φ)

V (φ)

)1/2

(1016–1017) GeV. (7.115)

Also, from the slow-roll condition (7.46),(
m P V ′(φ)

V (φ)

)1/2

� 3.5. (7.116)

Thus, we expect the energy scale of the inflationary potential is given by

V (φ)1/4 ∼ (1016–1017) GeV (7.117)

though it could be less if the inflationary potential is very flat.
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7.8 A worked example

The discussion of previous sections may be illustrated by the following example
of a suitable effective potential for inflation due to Steinhardt and Turner [5].
Consider the potential

V = V0 − βφ3 + λφ4 (7.118)

where V0, φ and λ are constants with β, λ > 0. It is assumed that the inflaton field
φ starts rolling from φ = 0, possibly because φ was zero in a high-temperature
phase where some symmetry was restored. In that case, slow roll began at
some lower temperature after the high-temperature phase ceased to be the stable
vacuum. It is also assumed that V is zero at the absolute minimum to which φ

rolls, corresponding to zero cosmological constant. At the absolute minimum,

φ = 3β

4λ
≡ σ (7.119)

and V (σ ) = 0 requires that

V0 = 27β4

256λ3 (7.120)

When φ � φ0 = 0, (7.41) then implies that

H 2 = H 2
0 =

9πβ4

32λ3
m−2

P . (7.121)

The slow-roll condition (7.45) implies that slow roll occurs for φ in the range

0 ≤ φ �
27πβ4

64λ3 m−2
P ≡ φe (7.122)

where it has been assumed that φ � σ in the slow-roll region. The second slow-
roll condition (7.46) is automatically satisfied whenever

V ′′(φ) ∼ V ′(φ)

φ
(7.123)

and |φ| is at least one order of magnitude less than m P . This is true here because

V ′′(φ) � −2V ′(φ)

φ
(7.124)

when φ � σ � m P . It is being assumed that σ is less than m P so that we do
not have to consider the effects of quantum gravity. Following (7.119), this is
obviously arranged for

β � 4
3λm P . (7.125)
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To avoid de Sitter fluctuations driving φ across the flat region faster than
it would roll semi-classically, we need a width �φ for the flat region with the
property (7.91). Combining this with (7.122) leads to

β �
8

9
√

2π3/2
N1/2

e λ3/2m P . (7.126)

The criterion for sufficient inflation (7.57) yields

β � 128

(
32

9π

)1/2

λ3/2m P (7.127)

where |V ′′(φi )| has been evaluated at φi ∼ H0 instead of φi ∼ 0 to allow for
quantum fluctuations and Ne has been taken to be about 64. The condition (7.126)
is clearly satisfied when (7.127) is.

For density fluctuations of the order required by COBE, (7.112) and (7.113)
imply that

−H 2(t∗)
π3/2φ̇0(t∗)

∼ 10−5. (7.128)

With the aid of (7.34), this leads to

β ∼ 105H 3(te)

π3/2φ2(te)
(7.129)

if t∗ � te, the time at which slow roll ends. With φe given by (7.122) and

H 2
e �

8π

3
m−2

P V0 (7.130)

using (7.41), and assuming that β/λm P � 1 (which will turn out to be the case),
we then find that

β ∼ 8.5× 103λ3/2m P . (7.131)

In practice, this is not a particularly good approximation because φ̇ is not constant
and φ̇0(t∗) < φ̇0(te). A more careful calculation [5] gives a value of β several
orders of magnitude larger. Note that even for the smaller value of β given by
(7.131), the constraint for sufficient inflation (7.127) is satisfied with two orders
of magnitude in hand and the de Sitter fluctuation constraint (7.126) is satisfied
with four orders of magnitude in hand. Combining (7.131) with the condition
(7.125) for σ to be less than m P , we find that

λ < 2.5× 10−8. (7.132)

Then (7.131) implies that
β

λ
m−1

P � 1.3 (7.133)

so that β/λm P � 1, as assumed earlier.
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7.9 Complex inflaton field

In previous sections, we have been assuming that the inflaton field φ is a real
scalar field. A simple extension is to take φ to be a complex scalar field [18] with
the Lagrangian density

� = ∂µφ∂µφ∗ − V (φ, φ∗). (7.134)

For a homogeneous field, the Euler–Lagrange equations are then

φ̈ + 3H φ̇ + ∂V

∂φ∗
= 0 (7.135)

with the Hubble constant given by

H 2 = 8π

3
m−2

P V (φ, φ∗). (7.136)

When the energy is dominated by the potential energy,

φ̇1 = − 1

6H

∂V

∂φ1
(7.137)

φ̇2 = − 1

6H

∂V

∂φ2
(7.138)

where we have separated φ into its real and imaginary parts

φ = φ1 + iφ2. (7.139)

For the slow-roll approximation to be valid,∣∣∣∣ φ̈1

3H φ̇1

∣∣∣∣ � 1 (7.140)∣∣∣∣ φ̈2

3H φ̇2

∣∣∣∣ � 1. (7.141)

These may be cast as the sufficient conditions (exercise 4)

m2
P

∣∣∣∣V11V1 + V2V12

V V1

∣∣∣∣ � 48π (7.142)

m2
P

∣∣∣∣V22V2 + V1V12

V V2

∣∣∣∣ � 48π (7.143)

m2
P

∣∣∣∣∣V 2
1 + V 2

2

V 2

∣∣∣∣∣ � 96π (7.144)

where Vα ≡ ∂V/∂φα(α = 1, 2) etc. The last condition ensures that the kinetic
term may be neglected compared with the potential term in the vacuum energy
density.
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If slow roll occurs from (φ1, φ2) = (φ10, φ20) close to a saddle point or
minimum of the effective potential, then we may write

V1 � V10 + V110(φ1 − φ10)+ V120(φ2 − φ20) (7.145)

V2 � V20 + V120(φ1 − φ10)+ V220(φ2 − φ20). (7.146)

In terms of the displacements,

xα ≡ φα − φα0 (α = 1, 2) (7.147)

and, correct to linear order in xα, the slow-roll equations may be written as

Ẋ = A − M X (7.148)

with

X =
(

x1
x2

)
A = 1

6H

(
V10

V20

)
(7.149)

and

M = 1

6H

(
V110 V120

V120 V220

)
. (7.150)

After diagonalizing M , we find that the displacements xα are superpositions of
eigensolutions with time dependence e−λi t where

λi = µi

6H
(i = 1, 2) (7.151)

with
2µ1,2 = V110 + V220 ±

√
(V110 − V220)

2 + 4V 2
120

. (7.152)

The number of e-folds of inflation may then be written as

Ne = 2V0 min(−µ−1
1 ,−µ−1

2 ) (7.153)

if µ1 and µ2 are both negative. Otherwise, Ne is controlled by the negative µi . It
is now necessary to have the potential sufficiently flat in all directions that there
is slow roll no matter what direction of roll occurs off the maximum (or saddle
point).

7.10 Chaotic inflation

Up to this point, it has been assumed that the initial conditions for slow-roll
inflation are thermal. By this we mean that the field φ was at the minimum of
the effective potential for a high-temperature phase until this minimum ceased
to be the absolute minimum. Thereafter, φ appeared in the flat region of
the potential, either by quantum mechanical or thermal tunnelling out of the
metastable minimum or after the metastable minimum had ceased to exist. If
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the flat region is in the vicinity of a maximum or turning point of the effective
potential, some fine tuning of the initial conditions may be required if φ is to start
out in the flat region.

An alternative possibility [19] is that the initial conditions are provided by a
chaotic quantum state which existed for times t � tP , where

tP ≡ m−1
P (7.154)

is the Planck time. A simple chaotic inflation model can be developed using the
Lagrangian density for the inflaton field φ,

� = 1
2∂µφ∂µφ − V (φ) (7.155)

with

V (φ) = 1

4
λφ4 (7.156)

and λ � 1, so that the potential is flat. At the Planck time, the uncertainty
principle implies that V (φ) can only be measured with an accuracy of m4

P . Thus,
instead of φ being fixed at the minimum of V (φ) at φ = 0 in all regions of space,
we should expect φ to take values in the range

− m P

λ1/4
� φ �

m P

λ1/4
(7.157)

in various regions of space (domains). These are the initial conditions for the
domains. The evolution of φ for t > tP will permit a classical description,
provided

V (φ) � m4
P ∂µφ∂µφ � m4

P (7.158)

in all domains. Since V (φ) is, in general, non-zero, the various domains will
undergo varying amounts of exponential expansion (inflation).

Consider one such domain with an initial homogeneous field φ(tP ). (As
observed after (7.94), spatial dependence of φ is in any case damped out rapidly
by the exponential growth of R(t).) For the potential (7.156), the Hubble constant
of (7.41) is

H =
(

2

3
πλ

)1/2

φ2m−1
P . (7.159)

Neglecting the φ̈ term in (7.33) for slow roll

φ̇ = −
(

λ

6π

)1/2

m Pφ (7.160)

so that

φ = φ(tP ) exp

[
−
(

λ

6π

)1/2

m P(t − tP )

]
. (7.161)
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The inflationary growth of the scale factor R(t) is now given by (7.49) as

ln
R(t)

R(tP )
=
∫ t

tP

H dt . (7.162)

Then, substituting the solution (7.161) for φ into the expression (7.159) leads to

ln
R(t)

R(tP )
= π

m2
P

φ2(tP )

(
1− exp

[
−
(

2λ

3π

)1/2

m P(t − tP )

])
. (7.163)

For t ∼ tP , this may be approximated by

R(t) � R(tP ) exp

( 2πλ

3m2
P

)1/2

φ2(tP )(t − tP)

 . (7.164)

From (7.161), we see that the motion is slow roll over a period

τ ∼
(

λ

6π

)−1/2

m−1
P (7.165)

during which time we see from (7.164) that there are

Ne = 2π

(
φ(tP)

m P

)2

(7.166)

e-folds of inflation. Thus, there are at least 64 e-folds of inflation provided

φ(tP ) � 3.2m P . (7.167)

This value is in the rquired range (7.157) provided

λ � 10−2. (7.168)

A region of the universe with such a value of φ(tP ) could, therefore, develop into
a universe in which the horizon and flatness problems are solved, as required for
the universe we occupy.

The observed value of δρ/ρ puts a more stringent constraint on the size of λ.
We estimate δρ/ρ from (7.112) with φ̇ given by (7.160), H given by (7.159) and
φ(t∗) given by (7.207) with p = 4. Then

δρ

ρ
= 2

√
6λ

3π2 [Ne(φ(t∗))]3/2 (7.169)

where, as in section 7.12, Ne(φ(t∗)) is the number of e-folds of inflation occurring
after cosmologically interesting scales leave the horizon. Thus,

λ =
(

δρ

ρ

)2 3π4

8
[Ne(φ(t∗))]−3. (7.170)
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For |δρ/ρ| ∼ 10−5 and Ne(φ(t∗)) = 50, we have

λ � 3× 10−14. (7.171)

The spectral index discussed in section 7.12 has the value given by

n(k)− 1 = −0.06 (7.172)

7.11 Hybrid inflation

In the slow-roll inflation models discussed so far, the inflaton φ which is
undergoing slow roll is also responsible for the vacuum energy density that drives
the inflationary expansion of the universe. In ‘hybrid’ inflation [20], two (real)
scalar fields φ and ψ are involved. The field φ undergoes slow roll but most of
the vacuum energy is due to the presence of ψ . When the value of φ drops below
some critical value φc, the field ψ is destabilized and it rolls from a vacuum with
positive energy density to the vacuum with zero energy density, so that inflation
ends.

The simple original model, due to Linde [20] has a potential of the form

V = 1

2
m2φ2 + λ1

4
(ψ2 − M2)2 + λ2

4
ψ2φ2 (7.173)

so that

V = V0 + 1

2
m2φ2 − 1

2
m2

ψψ2 + λ2

4
ψ2φ2 + λ1

4
ψ4 (7.174)

where

V0 = λ1

4
M4 and m2

ψ = λ1 M2. (7.175)

The field ψ has an effective mass-squared

m2
eff = λ2φ

2 − m2
ψ . (7.176)

For φ2 > φ2
c ≡ m2

ψ/λ2, the effective mass-squared is positive and the only
minimum of the effective potential in the ψ direction is at ψ = 0. The parameters
may be chosen [20] such that the curvature of the effective potential is much
greater in the ψ-direction than in the φ-direction, so that, initially, ψ rolls to
ψ = 0 while φ2 remains larger than φ2

c . After a period of slow roll, φ2 eventually
drops below φ2

c . At that point, ψ starts to roll towards a true minimum of the
effective potential which is at

φ = 0 ψ = ±M. (7.177)

This marks the end of the inflationary period. In the slow-roll region,

V (φ) � V0 + 1
2 m2φ2. (7.178)
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Thus, using (7.58),

Ne � 8πV0

m2
Pm2

(7.179)

if V0 is the dominant term. Ne can be adjusted to be greater than 64. For example,
for V0 � (1016 GeV)4, we have Ne � 64 for

m � 1013 GeV. (7.180)

The parameter φ2
c = m2

ψ/λ2 gives enough freedom to obtain the observed value

for δρ/ρ. (In the previous example φc � 3 × 1017 GeV.) We refer the reader to
the paper by Linde [20] and the book of Liddle and Lyth in the general references
for this chapter, for more detail.

7.12 The spectral index

The dependence of the density perturbation δρ/ρ on the scale k will eventually
allow different inflationary models to be distinguished by observations. Let us
define

P(k) ≡
(

δρ

ρ

)2

= π−3

(
H 2(t∗(k))

φ̇0(t∗(k))

)2

(7.181)

where we have used (7.112). (P(k) is proportional to the ‘power spectrum’.) The
spectral index n(k) is defined by

n(k)− 1 ≡ d ln P(k)

d ln k
. (7.182)

If n(k) is a constant, this reduces to

P(k) ∝ kn−1 (7.183)

so that n = 1 corresponds to a scale-independent spectrum.
The spectral index may be evaluated using the slow-roll conditions. Slow-

roll parameters ε(φ) and η(φ) may be defined by

ε(φ) ≡ 1

2
M2

P

(
V ′(φ)

V (φ)

)2

(7.184)

and

η(φ) ≡ M2
P

V ′′(φ)

V (φ)
(7.185)

where

M2
P ≡

m2
P

8π
= 1

8πGN
. (7.186)
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The derivatives dε/d ln k and dη/d ln k are required for the discussion of n(k).
From (7.34), during slow roll,

dt = − 3H

V ′(φ)
dφ. (7.187)

Moreover, the right-hand side of (7.181) is to be evaluated, as discussed after
(7.112), when

k = R(t∗(k))H (t∗(k)). (7.188)

During slow-roll inflation, the rate of change of H is small compared with the rate
of change of R and so

d ln k = H dt . (7.189)

Combining this with (7.187) gives

d

d ln k
= − 1

3H 2
V ′(φ)

d

dφ
. (7.190)

Then, using (7.41) for H 2,

d

d ln k
= −M2

P
V ′(φ)

V (φ)

d

dφ
. (7.191)

With the aid of this, we may now evaluate the required derivatives of the slow-roll
parameters (7.184) and (7.185), with the result

dε

d ln k
= −2(εη − 2ε2) (7.192)

and
dη

d ln k
= 2εη− ξ2 (7.193)

where

ξ2 ≡ M4
P

V ′(φ)V ′′(φ)

V (φ)2 . (7.194)

Returning to (7.181) and (7.182), we may first simplify P(k) using (7.34)
and (7.41) to obtain

P(k) = 1

6π3ε

V (φ)

M4
P

. (7.195)

Then differentiating with the aid of (7.191) gives [21]

n(k)− 1 = −6ε + 2η. (7.196)

Being slow-roll parameters, ε(φ) and η(φ) are small. Consequently,

|n(k)− 1| � 1 (7.197)
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and n(k) differs little from 1. The deviation of n(k) from 1 at values of k of
interest (k−1 between the present Hubble radius of 3000 Mpc and the smallest
scale for large-scale structure observations of 1 Mpc) is determined by the slow-
roll parameters ε(φ) and η(φ) for the given model. The variation of n(k) with k
is also easily calculated using (7.192) and (7.193) to be [22]

d ln n(k)

d ln k
= 16εη− 24ε2 − 2ξ2. (7.198)

The spectral index distinguishes models of inflation. Consider, for example,
an inflationary potential of the form

V (φ) = λφ p (p > 0). (7.199)

(The chaotic-inflation potential (7.156) is a special case with p = 4.) Then

ε(φ) = 1
2 M2

P p2φ−2 and η(φ) = M2
P p(p − 1)φ−2 (7.200)

so that
n(k)− 1 = −M2

P p(p + 2)φ−2 (7.201)

with φ to be evaluated at t = t∗(k) for scales k of interest. The key thing is the
number of e-folds of inflation that occurs after cosmologically interesting scales
leave the horizon. From (7.51), what we require is

Ne(φ(t∗)) = −M−2
P

∫ φe

φ(t∗)

V (φ)

V ′(φ)
dφ (7.202)

where φe corresponds to the end of slow roll. In the present model,

V (φ)

V ′(φ)
= p−1φ (7.203)

leading to
φ2(t∗)− φ2

e = 2Ne(φ(t∗))pM2
P . (7.204)

Slow roll ends when ε(φ) ∼ 1 and, from (7.200), we see that this happens when

φ = φe ∼ pMP . (7.205)

Thus,
φ2(t∗) � p2M2

P + 2Ne(φ(t∗))pM2
P . (7.206)

For modest values of p and large values of Ne(φ(t∗)),
φ(t∗) � √

2Ne(φ(t∗))pMP (7.207)

so that from (7.201)

n(k)− 1 � − 2+ p

2Ne(φ(t∗))
. (7.208)

For example [23], if Ne(φ(t∗)) = 50, we have

n(k)− 1 � −2+ p

100
(7.209)

and n(k) at observable scales differs from 1 by a few percent.
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7.13 Exercises

1. Obtain an alternative derivation of the equation of motion (7.33) for φ from
the energy–momentum conservation equation.

2. Generalize the equation of motion for the inflation field φ(t, x) to include
spatial variation (7.94).

3. Redo the calculations of section 7.8 for the potential

V = V0 − αφ2 + λφ4 with α, λ > 0

4. Derive the suffiicient conditions (7.142) to (7.144) for the slow roll for a
complex inflation field.

7.14 General references

The books and review articles that we have found most useful in preparing this
chapter are:

• Kolb E W and Turner M S 1990 The Early Universe (Reading, MA:
Addison-Wesley)

• Liddle A R and Lyth D H 2000 Cosmological Inflation and Large-Scale
Structure (Cambridge: Cambridge University Press)

• Olive K A 1990 Inflation Phys. Rep. 190 307
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Chapter 8

Inflation in supergravity

8.1 Introduction

In order for new inflation (slow-roll inflation) to produce sufficient e-folds of
inflation, it is necessary for the effective potential for the inflaton to be very
flat near the point where slow roll begins. In general, even if the tree-level
potential has this property, this flatness may be lost once radiative corrections
are included. For this reason, it is advantageous in constructing models of
inflation to employ a supersymmetric theory where cancellations of radiative
corrections are enforced by supersymmetry. If we want a supersymmetric theory
that contains gravity, the natural approach, as discussed in section 2.8, is to
construct a locally supersymmetric theory (supergravity). Once a superpotential
and a Kähler potential have been chosen for the inflaton field, the Lagrangian
terms and the effective potential for the inflaton follow.

As we shall see, viable inflationary theories can be constructed with simple
choices of superpotentials and Kähler potentials. The positive value of the
potential required for inflation may arise either from the first term in (2.156),
the F-term, or from the second term in (2.156), the D-term, in the case that the
inflaton is coupled to fields charged under a U(1) gauge symmetry. Theories of
chaotic inflation and hybrid inflation may also be constructed.

There are two potential problems arising from supergravity models of
inflation which will be addressed in section 8.5 and section 8.6. The first
is that gravitons (whose density was rendered negligible by inflation) may be
produced by reheating after inflation. It is necessary to arrange that the reheating
temperature is such that the gravitons do not have a serious effect on the
abundances of deuterium and of 3He relative to 4He abundance.

The second problem (the so-called ‘Polonyi’ problem) results from the
presence in supergravity theories of scalar fields with only gravitational strength
interactions, which release the energy stored in their expectation values at very
late times. This can lead to negligibly low helium and deuterium abundances at
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temperatures too low for the necessary abundances to be recreated. It can also
lead to too low a baryon number density.

8.2 Models of supergravity inflation

The key thing we require to study inflation is the effective potential for the inflaton
field, which we assume to be a gauge-singlet scalar field φ. If we also assume
minimal kinetic terms for φ arising from (2.151), then the effective potential is of
the form

V = eφ∗φ
(∣∣∣∣∂W

∂φ
+ φ∗W

∣∣∣∣2 − 3|W |2
)

(8.1)

as in (2.152), in units where MP of (2.145) is one. In general [1], we may consider
a superpotential which is a power series in φ,

W (φ) = µ2
∞∑

n=0

λnφn (8.2)

where, as usual, we are not distinguishing notationally between the chiral
superfield and the scalar field in that supermultiplet. When the expectation value
of φ is real, the explicit effective potential corresponding to the superpotential
(8.2) is (exercise 1)

V = µ4eφ2 [λ2
1 − 3λ0 + 4λ1(λ2 − λ0)φ

+ (λ2
0 − λ2

1 + 4λ2
2 − 2λ2λ0 + 6λ1λ3)φ

2 + 2(λ1λ0 + 6λ2λ3 + 4λ1λ4)φ
3

+ (λ2
1 + λ2

2 + 9λ2
3 + 2λ2λ0 + 2λ1λ3 + 2λ0λ4 + 16λ2λ4 + 10λ1λ5)φ

4

+ · · ·]. (8.3)

A particularly simple case [2] is to take W (φ) quadratic in φ:

W (φ) = µ2(λ0 + λ1φ + λ2φ
2). (8.4)

The form of W (φ) is further restricted by the requirement of the existence of
a supersymmetry-preserving minimum of V (φ) with V = 0 for the following
reasons. We have seen in section 7.7 that the energy scale of the inflationary
potential is expected to be of order 1016–1017 GeV. After inflation has occurred,
φ rolls to a minimum of this potential. This minimum should have V = 0
because otherwise there would be a vacuum energy on the 1016–1017 GeV scale
which could not be cancelled by later supersymmetry breaking on the electroweak
scale. There would then be a large cosmological constant. This minimum
should be a supersymmetry-preserving minimum because otherwise there would
be supersymmetry breaking on a scale too large for the hierarchy problem to
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be solved. Let this minimum be at φ = σ . From (2.158), supersymmetry
conservation requires

∂W

∂φ
+ φW = 0. (8.5)

From (8.1), V = 0 requires, in addition, that W = 0. Thus, we require that

∂W

∂φ
= W = 0 at φ = σ. (8.6)

In general, we require

∞∑
n=0

λnσ n = 0 and
∞∑

n=0

nλnσ n−1 = 0. (8.7)

In the special case (8.4), these lead to

σ = − λ1

2λ2
and 4λ0λ2 = λ2

1. (8.8)

Then,
W (φ) = µ2λ2(φ − σ)2. (8.9)

Then, from (8.1) the effective potential corresponding to (8.9) is (exercise 2)

V = eφ2
µ4λ2

2[φ6 − 4σφ5 + (6σ 2 + 1)φ4 − 4σ 3φ3 +
+ (σ 4 − 6σ 2 + 4)φ2 + 8σ(σ 2 − 1)φ + σ 2(4− 3σ 2)]. (8.10)

Assuming that slow roll occurs from close to the origin, we need

V ′(0) = 0. (8.11)

Then
σ(σ 2 − 1) = 0. (8.12)

For the minimum not to be at the origin (since φ must roll from a maximum), we
do not want σ = 0. Thus, σ must be ±1 and we take

σ = 1 (8.13)

without loss of generality. Then (8.9) becomes

W (φ) = µ3λ2(φ − 1)2 (8.14)

(still in units where MP = 1) and (8.10) is

V (φ) = eφ2
µ4λ2

2(1− φ2 − 4φ3 + 7φ4 − 4φ5 + φ6). (8.15)
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Expanding eφ2
in powers of φ2 for the purpose of studying the slow-roll region

close to the origin,

V (φ) = µ4λ2
2(1− 4φ3 + 13

2 φ4 − 8φ5 + 23
3 φ6 + · · ·). (8.16)

It follows that
V0 ≡ V (0) = µ4λ2

2. (8.17)

Then, the Hubble parameter H relevant to slow roll is given by (7.41) and, in units
with MP = 1,

H 2 � H 2
0 = 1

3 V0 = 1
3µ4λ2

2 (8.18)

recalling that m2
P = 8π M2

P . Also, in units with MP = 1, the slow-roll condition
(7.45) is

|V ′′(φ)|
V (φ)

� 3 (8.19)

and the slow-roll condition (7.46) is(
V ′(φ)

V (φ)

)2

� 6. (8.20)

With V (φ) given by (8.16) and with φ close to zero, (8.19) requires that φ is in
the range

0 � φ �
MP

8
≡ φe (8.21)

(8.20) is automatically satisfied whenever V ′′(φ) ∼ V ′(φ)/φ and |φ| is at least
an order of magnitude less than m P . We certainly satisfy the latter requirement
because φe = 1

8 MP and, for small φ, the former condition is also satisfied.
To avoid de Sitter fluctuations driving φ across the flat region too rapidly

(faster than it would roll semi-classically) we need a width �φ = φe for the flat
region with the property (7.91). With the Hubble constant given by (8.18), then

µ4λ2
2 <

3π2

16Ne
. (8.22)

If we are able to arrange that Ne ∼ 64, then this requires that

µ2|λ2| < 0.17 (8.23)

or, equivalently,
|H0| < 0.098. (8.24)

Turning next to the number of e-folds of inflation, (7.57) requires that

Ne ∼ 3H 2

|V ′′(φi )| . (8.25)
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To allow for quantum fluctations V ′′(φi ) should be evaluated at φi ∼ H0 rather
than φi ∼ 0. (See, for example, [3].) A rough estimate may be made by keeping
only the term linear in φ in V ′(φ). Then,

Ne ∼ |H0|
8µ4λ2

2

∼ 1

8
√

3µ2|λ2|
. (8.26)

Ne ∼ 64 is achieved for

µ2|λ2| � 1.13× 10−3. (8.27)

This value of µ2|λ2| satisfies with ease the bound (8.23) to avoid de Sitter
fluctuations driving φ across the flat region too rapidly.

Using (7.112) and (7.113), density fluctuations of the order required by the
COBE observations imply that

− H 2(t∗)
π3/2φ̇0(t∗)

∼ 2× 10−5 (8.28)

(see [3]). We certainly have t∗ � te, the time at which slow roll ends. From
(7.34),

φ̇ = −V ′(φ)

3H
. (8.29)

If we make a rough estimate of V ′(φ) from the term quadratic in φ, then

V ′(φe) = −12µ4λ2
2φ

2
e . (8.30)

If we also approximate H (te) by H0 of (8.18),

φ̇(te) � 4
√

3µ2|λ2|φ2
e . (8.31)

With these approximations,

− H 2(te)

π3/2φ̇(te)
� − µ2|λ2|

12
√

3µ2|λ2|φ2
e

. (8.32)

With t ∼ te and φe ∼ 1/8, the value of µ2|λ2| consistent with the density
fluctuations (8.28) is

µ2|λ2| � 3.6× 10−5. (8.33)

This value of µ2|λ2| is sufficiently small that we get from (8.26) more than 64
e-folds of inflation with ease. The condition (8.22) to avoid de Sitter fluctuations
driving φ too rapidly across the flat region is also satisfied with ease. For smaller
values of t∗, and so of φ(t∗), µ2|λ2| is even smaller.

To decide whether sufficient inflation occurs in practice, it is also necessary
to consider the initial conditions, because sufficient inflation depends on φ starting
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rolling across the flat region between φ = 0 and φ = φe from a value of φ

sufficiently close to φ = 0. However, if initially the universe was in thermal
equilibrium, then thermal effects may put φ well into the region φ > 0 and prevent
enough inflation. This is referred to as the ‘thermal constraint’ [4]. In general,
for minimal kinetic terms the zero-temperature effective potential V derived from
(2.147) is

V = eG(Gi Gi − 3) (8.34)

and from (2.162), the finite-temperature correction V̄ T
1 to the effective potential

is given by

V̄ T
1 = constant+ N

12
T 2eG(Gi Gi − 2) (8.35)

in the limit of a large number N of chiral fields, which is a reasonable
approximation in practice. If the finite-temperature effects are not to destroy the
flatness of the potential, we must require that

∂ V̄ T
1

∂φ
= 0 = ∂V

∂φ
at φ = 0. (8.36)

For a single gauge-singlet real scalar field φ with minimal kinetic terms, so that
Gi = Gi = G′(φ), these require that

G′(0) = 0 (8.37)

so that
V (0) < 0. (8.38)

It is then impossible for φ to roll to a (supersymmetry-preserving) minimum with
V = 0. Thus, the thermal constraint is a very powerful constraint. It may
sometimes be evaded if the inflaton has non-minimal kinetic terms.

However, if a (weakly-coupled) inflaton field φ is out of thermal equilibrium
for temperatures below the Planck scale, then the initial value of φ will, in general,
have a broad distribution [5]. Consequently, it is unlikely that a randomly chosen
horizon volume will possess a (smoothed-out) value of φ close enough to φ = 0
for much inflation to occur. However, any horizon volume which does have a
value of φ close to φ = 0 will undergo inflation and, after inflation has occurred,
most of space will be occupied by such regions. As a result, we are very likely to
find ourselves in a region of space which derived from such a horizon volume at
early times. For this reason, we shall not consider ourselves bound by the thermal
constraint.

We consider next reheating in the context of this simple supergravity model.
For a gauge-singlet inflaton field with only gravitational strength couplings, we
expect a decay rate

�φ ∼
m3

φ

M2
P

. (8.39)
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Also, from the double derivative of the effective potential, a mass-squared m2
φ of

the inflaton of order

m2
φ ∼

µ4λ2
2

M5
P

(8.40)

is to be expected, allowing for 〈φ〉 ∼ MP owing to the effects of quantum gravity
and restoring factors of MP . Thus,

�φ ∼ µ6λ3
2

M5
P

. (8.41)

The reheating temperature of (7.72) is

TR ∼ (�φ MP )1/2 ∼ µ3λ
3/2
2

M2
P

(8.42)

ignoring the difference between m P and MP . Using the estimate (8.33), this gives

TR ∼ 1011 GeV. (8.43)

8.3 D-term supergravity inflation

To arrange for sufficient inflation in the model of the previous section, it was
necessary to take µ2|λ2| ∼ 10−3, which is an unnatural fine-tuning of the
superpotential. This is a generic feature of supergravity models where the positive
value of the effective potential during inflation is due to a non-zero F-term in
the sense that | ∂W

∂φi
+ φi∗W |2 
= 0 in (2.156). (The terminology is because

∂W/∂φi + φi∗W is the generalization to the supergravity context of the auxiliary
field usually denoted by Fi in the construction of the globally-supersymmetric
Lagrangian.) When all relevant fields are gauge singlet and assuming minimal
kinetic terms, the effective potential for the inflaton takes the form (8.1). There is
a term quadratic in φ, namely V0φ

∗φ, where V0 ≡ V (0). Keeping only this term
and assuming a real inflaton,

V ′′(φ) ∼ V0 (8.44)

and then, from (8.25), the number of e-folds of inflation is

Ne ∼ 3H 2

|V0| . (8.45)

But when φ � φ0 � 0,
H 2 � 1

3 V0. (8.46)

Thus,
Ne ∼ 1. (8.47)
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To obtain sufficient e-folds of inflation generally requires some fine-tuning of the
parameters of the superpotential, so that other quadratic terms can cancel the one
displayed. In the model just discussed in section 8.2, the choice of superpotential
is such that a quadratic term in V (φ) does not occur. Nevertheless, there is a
similar problem because sufficient inflation required the parameter µ2|λ2| in the
superpotential to be � 10−3.

This generic difficulty for F-term inflation can be avoided if the positive
value of V required for inflation originates from the second term of (2.156)
(referred to as the D-term because it generalizes the contribution of the auxiliary
field denoted by D in the context of global supersymmetry). Because there is no
factor of eφ∗φ in the D-term, the previous argument does not apply and D-term
inflation [6] does not suffer from the generic problem discussed above.

A simple example [6] is provided by the superpotential

W = λφφ+φ− (8.48)

where φ is the inflaton field and φ± are two other scalar fields with charges ±1
under a U(1) gauge symmetry. Let the Kähler potential K be chosen to have the
minimal form, as in (2.151), and let the gauge kinetic function be minimal, as in
(2.154). Then

G = φ∗φ + φ∗+φ+ + φ∗−φ− + ln |W |2 (8.49)

and (exercise 3), using (2.156), the effective potential is

V = e|φ|2+|φ+|2+|φ−|2λ2[|φ+φ−|2(1+ |φ|2)+ |φφ−|2(1+ |φ+|2)
+ |φφ+|2(1+ |φ−|2)] + 1

2 g2(|φ+|2 − |φ−|2 − ξ)2. (8.50)

A constant ξ (the Fayet–Iliopoulos) term has been included, which can be present
for a U(1) gauge symmetry. We assume that ξ > 0. It may be checked
(exercise 4) that (φ+, φ−) = (0, 0) is a minimum in the (φ+, φ−) space when
the inflaton field φ satisfies

|φ| > g
√

ξ

λ
≡ φc. (8.51)

For these minima, we see that

V = 1
2 g2ξ2. (8.52)

Thus, the potential is then flat so far as the inflaton is concerned (and has a large
positive curvature in the φ+ and φ− directions).

In a chaotic inflation scenario, we may assume the initial condition |φ| � φc.
Then inflation will occur. The amount of inflation will be very large because the
only lack of flatness in the effective potential, so far as the inflaton is concerned,
is due to radiative corrections. Note that the positive value of V driving inflation
is essentially due to the D-term.
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8.4 Hybrid inflation in supergravity

The hybrid inflation idea discussed in section 7.11 may be extended to the context
of supergravity. A simple superpotential which allows hybrid inflation to be
implemented [7] is

W = φ(λψ1ψ2 − µ2) (8.53)

where ψ1 and ψ2 are a pair of (chiral) superfields in non-trivial conjugate
representations of some non-Abelian gauge group and φ is a superfield neutral
under any gauge group. (We use the same notation for superfields and the scalar
field associated with them.) Assuming minimal kinetic terms, as in (2.151) and
(2.156), the corresponding effective potential apart from the last (D-) terms in
(2.156) deriving from the non-trivial gauge properties of ψ1 and ψ2, is as follows

V = e|φ|2(|Fφ |2 + |Fψ1 |2 + |Fψ2 |2 − 3|W |2) (8.54)

where

Fφ ≡ ∂W

∂φ
+ φ∗W = (1+ |φ|2)(λψ1ψ2 − µ2) (8.55)

Fψ1 ≡
∂W

∂ψ1
+ ψ∗1 W = λφ(1+ |ψ1|2)ψ2 − µ2ψ∗1 φ (8.56)

Fψ2 ≡
∂W

∂ψ2
+ ψ∗2 W = λφ(1+ |ψ2|2)ψ1 − µ2ψ∗2 φ. (8.57)

If ψ1 and ψ2 roll rapidly to zero, then the effective potential for φ is

V = eφ2
µ4(1− φ2 + φ4) (8.58)

since φ is a real scalar field being neutral under any gauge group. Expanding in
powers of φ2,

V � µ4(1+ 1
2φ4). (8.59)

The cancellation of the quadratic term in φ evades the generic problem with F-
term inflation discussed in the previous section.

It may be seen by returning to the globally supersymmetric theory that it is
indeed reasonable to take ψ1 and ψ2 fixed to zero. The globally supersymmetric
effective potential is (following (2.120))

V =
∣∣∣∣∂W

∂φ

∣∣∣∣2 + ∣∣∣∣ ∂W

∂ψ1

∣∣∣∣2 + ∣∣∣∣ ∂W

∂ψ2

∣∣∣∣2 (8.60)

= |λψ1ψ2 − µ2|2 + λ2φ2(|ψ1|2 + |ψ2|2) (8.61)

(apart from the D-terms for the gauge non-singlets ψ1 and ψ2 and remembering
that φ is neutral.) The absolute minimum of the effective potential is at

φ = 0, ψ1 = ψ2 = µ√
λ
. (8.62)
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However, if

φ >
µ√
λ
≡ φc (8.63)

the fields ψ1 and ψ2 have positive effective squared masses and are confined to
ψ1 = ψ2 = 0. The effective masses of ψ1 and ψ2 are contained in the terms

−µ2λ(ψ1ψ2 + ψ∗1 ψ∗2 )+ λ2φ2(ψ1ψ
∗
1 + ψ2ψ

∗
2 ). (8.64)

Writing

ψ1 ≡ 1√
2
(A1 + iB1) and ψ2 ≡ 1√

2
(A2 + iB2) (8.65)

the effective mass terms are

1
2λ2φ2(A2

1 + B2
1 + A2

2 + B2
2 )− µ2λ(A1 A2 − B1 B2) (8.66)

and the mass-squared eigenvalues are (λ2φ2±µ2λ)/2, both of which are positive
when φ > φc.

Now the model for inflation reduces to one with a single real scalar inflaton
with potential (8.59). The slow-roll conditions (7.45) and (7.46), in units where
the reduced Planck mass MP is 1, are satisfied when

|V ′′(φ)|
V (φ)

� 3 and

(
V ′(φ)

V (φ)

)2

� 6. (8.67)

With the above potential, these give φ2 � 1/2 and φ2 � 1.15 respectively. Thus,
the slow-roll region is

φ2 � 1
2 . (8.68)

To calculate the number of e-folds of inflation, it is necessary to consider
the time dependence of φ during slow roll. In units where MP = 1, (7.41) is
H 2 = V/3 and in the slow-roll region V (φ) � µ4, so that

H � µ2

√
3
. (8.69)

Then (7.34) is

φ̇ = − 2√
3
µ2φ3 (8.70)

which shows that φ is decreasing with t for φ > 0. In MP = 1 units, (7.51) gives

Ne = −
∫ φ f

φi

V (φ)

V ′(φ)
dφ (8.71)

� 1
4 (φ−2

f − φ−2
i ) (8.72)
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so, for φ f � φi , we have

Ne � 1
4φ−2

f . (8.73)

Thus, what sets the limit on the number of e-folds of inflation is how small φ f

can get. There is no limit set by slow roll because we have slow roll whenever
φ2 � 1/2. However, there are radiative corrections to the effective potential that
we should now take into account. At one-loop order, they are of the form

V1-loop =
λ2µ4

8π2 ln
φ

φc
(8.74)

so that

V ′1-loop =
λ2µ4

8π2
φ−1. (8.75)

This is of the same order as V ′(φ) from the supergravity potential (8.59) (without
radiative corrections) when

φ �
√

λ

4π
. (8.76)

For smaller values of φ, the contribution to V ′(φ) in the slow-roll equation due to
radiative corrections is larger than V ′(φ) from supergravity at tree level. Thus, we
must truncate the contribution to Ne from rolling in the uncorrected supergravity
potential at

φ f �
√

λ

4π
. (8.77)

Then the contribution to Ne from the period of slow roll before radiative
corrections become important is

Ne � πλ−1. (8.78)

This gives at least 64 e-folds of inflation (even without including any further slow
rolling when radiative corrections have become important) for

λ � 0.05. (8.79)

Recalling that M2
P = m2

P/8π , (7.114) and (8.59) lead to

δρ

ρ
� µ2

2(8π)3/2φ3(t∗)
(8.80)

in units where MP = 1. If we estimate t∗ as the time at which we can no longer
neglect radiative corrections, then from (8.76)

φ(t∗) �
√

λ

4π
(8.81)
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and
δρ

ρ
� µ2

25/2(4π)3λ3/2
. (8.82)

The requirement that δρ/ρ � 2 × 10−5 fixes µ in units of MP once λ has been
chosen. For λ chosen as in (8.79), we have

µ � 0.05MP . (8.83)

8.5 Thermal production of gravitinos by reheating

The thermal production of gravitinos in the early universe can cause problems, as
discussed in section 6.3. At first sight, a possible solution to these problems is for
the gravitino density to be diluted by inflation. However, a gravitino density can
be produced by reheating after inflation and it is necessary for this density to be
low enough that the problem is not recreated.

Gravitinos produced by reheating after inflation can have a serious effect on
the abundances of deuterium (D) and 3He relative to the 4He abundance. The
problem is that D and 3He can be produced by photofission from 4He by radiation
from gravitino decay. These relative abundances are known to be very small and
so we must avoid gravitino densities sufficiently large to violate these bounds.

The gravitino density n3/2 produced during reheating by 2 → 2 scattering
processes involving gauge bosons and gauginos has been estimated [8] to be given
by

n3/2

nγ

� 2× 10−13
(

TR

109 GeV

)
(8.84)

where TR is the reheating temperature. However, an estimate of the amount of D
and 3He produced by photofission from 4He requires that

m3/2
n3/2

nγ

� 3× 10−12 GeV. (8.85)

Thus, there is a bound on the reheating temperature:

TR �
1.5× 1010 ( GeV)2

m3/2
. (8.86)

For example, for m3/2 = 100 GeV, TR � 1.5×108 GeV. Subsequent calculations
[9] have shown that the bound is less stringent than this formula suggests for
larger values of m3/2, e.g. for m3/2 = 1 TeV, TR � 2 × 109 GeV. There is also
the danger of excessive gravitino production by decay of the inflaton. This is a
very model-dependent matter but sufficient suppression can occur in particular
models [10].
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8.6 The Polonyi problem

This generic problem results from the presence in a theory of a light scalar field
which has only gravitational strength interactions, with the consequence that it
is decoupled during most of the history of the universe and eventually releases
energy stored in its expectation value at a very late time [11]. This release
of energy increases the entropy of the universe at a low temperature thereby
producing a negligible baryon abundance and, worse still, negligible helium and
deuterium abundances. The temperature may then be too low for the required
abundances to be recreated.

A simple example of this problem, from which it derives its name, occurs in
the context of the Polonyi model for supersymmetry breaking in supergravity. We
describe first this mechanism for supersymmetry breaking. The Polonyi model
is an example of a model in which supersymmetry breaking occurs in a ‘hidden
sector’, by which is meant a sector of the theory which couples to the ‘observable
sector’ of quarks, leptons, gauge fields, Higgs scalars, and their supersymmetric
partners only through gravitational interactions. The hidden sector of the Polonyi
model employs a single gauge-singlet scalar field φ̃ (not the inflaton) and its
supersymmetric fermionic partner with superpotential

W̃ (φ̃) = µ̃2(φ̃ + β). (8.87)

(We are using the same notation for the chiral superfield and its scalar field
component.) Minimal kinetic terms are chosen so that G of (2.144) has the form

G = φ̃∗φ̃ + ln |W̃ |2. (8.88)

In (8.87), µ̃ is a real parameter with dimensions of mass and

β = 2−√3 (8.89)

in units where MP = 1. The parameter β has been fixed to this value so that the
effective potential of (2.147)

V = µ̃4eφ̃∗φ̃ (|1+ φ̃∗(φ̃ + β)|2 − 3|φ̃ + β|2) (8.90)

has its absolute minimum at
φ̃ = √3− 1 (8.91)

with V = 0 and, so, the desirable feature of a vanishing cosmological constant in
the physical vacuum. At this minimum,

∂W̃

∂φ̃
+ φ̃∗W̃ = √3µ̃2 
= 0. (8.92)

Consequently, supersymmetry is broken, as discussed after (2.152).
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If the field φ̃ starts (because of quantum fluctuations) at some value
of φ̃ which differs from the minimum, then the energy density stored in
the expectation value of φ̃ is of order µ̃4. The size of µ̃ is related to
the size of supersymmetry breaking effects. In supergravity theories with
supersymmetry breaking in a hidden sector, the size of supersymmetry breaking
effects transmitted gravitationally to the observable sector is on the scale of the
gravitino mass m3/2 and, for supersymmetry to solve the hierarchy problem, m3/2
should be about 100 GeV to 10 TeV. In the Polonyi model, the gravitino mass is

m3/2 = µ̃2

MP
e(
√

3−1)2/2. (8.93)

Thus, for m3/2 in the range 100 GeV to 10 TeV, we have

1010 GeV ≤ µ̃ ≤ 1011 GeV. (8.94)

(For a discussion of the gravitino mass in supergravity theories with hidden-sector
supersymmetry breaking see, for example, [12].)

For the discussion of the entropy increase of the universe when the Polonyi
field vacuum energy decays, we shall need to know the expectation value of
the Polonyi field. In the context of cosmological inflation, we should determine
this expectation value by minimizing the total effective potential of the Polonyi
field and the inflaton. (There may also be effects of quantum fluctuations.) The
superpotential of the Polonyi field φ̃ is as in (8.87) and, for definiteness, we may
take the superpotential for the inflaton field φ to be

W (φ) = µ2λ2(φ − σ)2 (8.95)

as in (8.9). Thus, the total superpotential is

Wtot(φ, φ̃) = W̃ (φ̃)+W (φ). (8.96)

We also assume minimal kinetic terms so that

G = φ̃∗φ̃ + φ∗φ + ln |Wtot|2. (8.97)

Then the effective potential can be calculated from (2.147) in units where the
reduced Planck mass MP = 1. Taking φ̃ to be real, working to quadratic order in
φ̃ (when φ̃ � 1 in the same units), and remembering that φ � 0 during slow roll,
the minimum of the effective potential may be estimated to be (exercise 5)

φ̃ � 2µ2µ̃λ2σ
2

µ4λ2
2 − 4βµ2µ̃λ2σ 2

. (8.98)

The values of the parameters of the Polonyi model are given by (8.89) and (8.94),
and the parameters of the superstring model of inflation that we are employing by
(8.13) and (8.33). Using these values, φ̃ may be estimated to be

φ̃ � 3(10−3–10−4). (8.99)
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Table 8.1. Event sequence when the inflaton vacuum energy decays before the Polonyi
field oscillates.

Time (t) ρφ(t) ρ
φ̃
(t) ρrad(t)

t f < t < tD ∼ �−1
φ ∼t−2 �ρ

φ̃
(t f ) 0

t = tD ∼ �−1
φ ρφ(tD)→ ρrad(tD)

TR ∼ m3/2
φ M−1/2

P

tD < t < t
φ̃
∼ m−1

φ̃
0 �ρ

φ̃
(t f ) ∼T 4

t
φ̃

< t < t̃D ∼ �−1
φ̃

∼T 3 ∼T 4

t = t̃D ∼ �−1
φ̃

ρ
φ̃
(t̃D)→ radiation

T̃R ∼ m3/2
φ̃

M−1/2
P

We shall assume in what follows that, in reduced Planck-scale units,

φ̃ = f (8.100)

where f is not many orders of magnitude less than unity. Considering the effects
of quantum fluctuations will also lead to this conclusion.

To proceed further, we need to specify the temperature at which the inflaton
vacuum energy decays. The crucial thing is whether this is before or after the
Polonyi field starts to oscillate [13, 14].

8.6.1 Inflaton decays before Polonyi field oscillation

Let us consider first the case when the inflaton has already decayed and reheated
the universe before the Polonyi field starts to oscillate. Then, the sequence of
events is summarized in table 8.1. Inflation ends at t = t f and, at that time in the
present model, the Polonyi field vacuum energy density is

ρφ̃(t f ) � 1
2 m2

φ̃
φ̃2 (8.101)

provided that φ̃ is significantly less than 1 in reduced Planck-scale units. Also,
the inflaton vacuum energy density is

ρφ(t f ) � µ4λ2
2 (8.102)

from (8.17), because φ does not roll much during inflation. The value of the
Polonyi mass-squared is determined by

m2
φ̃
= ∂2Veff

∂φ̃2
= β2µ̃2 (8.103)
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where, from (8.93),
µ̃ ∼ m1/2

3/2 (8.104)

in the present units and β is given by (8.89).
For tφ̃ < t < t̃D , where the Polonyi field starts to oscillate at t = tφ̃ when

the temperature is Tφ̃ , and its vacuum energy density decays at t̃D ,

ρφ̃(t)

ρrad(t)
= ρφ̃(tφ̃)

ρrad(tφ̃ )

Tφ̃

T
= ρφ̃(t f )

ρrad(tφ̃ )

Tφ̃

T
(8.105)

is the ratio of the Polonyi field vacuum energy density to the radiation energy
density ρrad. Since

ρrad(tφ̃ ) ∼ T 4
φ̃

(8.106)

with the approximation (8.101), we have

ρφ̃(t)

ρrad(t)
∼

m2
φ̃
φ̃2

2T 3
φ̃

T
. (8.107)

Further progress requires a calculation of Tφ̃ .
Between t = tD , the time at which the inflaton vacuum energy density

decays, when the temperature is TD , and t = tφ̃ , the universe is radiation
dominated. Thus, in reduced Planck-scale units,(

Ṫ

T

)2

=
(

Ṙ

R

)2

= 1

3
ρrad(T ) = 1

3
ρrad(TD)

(
T

TD

)4

(8.108)

where we have used the fact that RT is constant whenever the number of particle
species is constant, for conservation of entropy. This equation has the solution

t = ρrad(TD)

6T 4
DT 2

. (8.109)

At t = tφ̃ , ρrad(TD) is one or two orders of magnitude larger than T 4
D , using

(2.22) with NB + 7
8 NF = 915

4 for the supersymmetric standard model or 427
4 for

the standard model respectively. Also, since tφ̃ ∼ m−1
φ̃

, we have

Tφ̃ ∼ m1/2
φ̃

. (8.110)

Returning to (8.107), for tφ̃ < t < t̃D ,

ρφ̃(t)

ρrad(t)
∼

m1/2
φ̃

φ̃2

T
. (8.111)
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If the Polonyi field were not to decay, then at T = 2.7 K � 10−31MP , we
would have

ρφ̃(t)

ρrad(t)
∼ 1031m1/2

φ̃
φ̃2. (8.112)

If we want to avoid ρφ̃(t)/ρrad(t) > 1, so that the φ̃ energy density does not
dominate the energy density of the universe and produce too large an expansion
rate, we need

φ̃ � (10−15 − 10−16)m−1/4
φ̃

. (8.113)

With mφ̃ given by (8.103) and (8.93) and for

m3/2 = 10−15–10−16 (8.114)

in reduced Planck-scale units, we then require

φ̃ � 10−13–10−14. (8.115)

Comparing this with (8.100), this is an unnaturally small value by many orders
of magnitude. Making (8.106) more precise only increases this by an order of
magnitude.

In practice, the Polonyi vacuum energy decays but the previous discussion
suggests that there may be a problem with entropy production when it does decay.
The decay occurs at temperature T̃D with

t ∼ t̃D ∼ �−1
φ̃

(8.116)

with
�−1

φ̃
∼ m3

φ̃
(8.117)

and then, from (8.111),

ρφ̃(t̃D)

ρrad(t̃D)
∼

m1/2
φ̃

φ̃2

T̃D
. (8.118)

We now require an estimate of the Polonyi field decay temperature T̃D .
Remembering that, between t = tφ̃ and t = t̃D , the vacuum energy density

for φ̃ behaves like a gas of free non-relativistic particles behaving as in (7.64),
ρφ̃(t) is growing relative to ρrad(t). Consequently, we may expect ρφ̃ to dominate

the energy density of the universe by t = t̃D . We therefore approximate the
time dependence of the temperature by a universe dominated by the Polonyi field
energy density ρφ̃ . (Recall that the inflaton vacuum energy density has already
decayed and been converted to radiation.) Then we have to solve

(
Ṫ

T

)2

=
(

Ṙ

R

)2

= 1

3
ρφ̃(tφ̃)

(
T

T
φ̃

)3

(8.119)
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with the result that

t ∼
(

ρφ̃(tφ̃ )

Tφ̃

)−1/2

T−3/2. (8.120)

At t = t̃D , and with t̃D given by (8.116), we get

T̃D ∼ m2
φ̃
ρ
−1/3
φ̃

(tφ̃ ).Tφ̃ (8.121)

Using (8.111), and with ρφ̃(tφ̃) = ρφ̃(t f ) given by (8.101), we have

T̃D ∼ m11/6
φ̃

φ̃−2/3. (8.122)

Substituting this into (8.118) gives

ρφ̃(t̃D)

ρrad(t̃D)
∼ m−4/3

φ̃
φ̃8/3. (8.123)

Consequently, the φ̃ vacuum energy density dominates the density of the universe
at the moment of decay provided

φ̃ > m1/2
φ̃

. (8.124)

With mφ̃ given by (8.103), this condition is

φ̃ > 10−8 (8.125)

in reduced Planck-scale units. With the estimate (8.100) of φ̃, (8.125) is satisfied
with ease.

Provided that ρ
φ̃

does dominate the energy density of the universe at the
moment of decay, there is a further reheating of the universe (in addition to the
reheating that occurred when the inflaton decayed) to a temperature

T̃R ∼ m3/2
φ̃

(8.126)

where �
φ̃

is given by (8.117). For successful nucleosynthesis, we must have

T̃R > 1 MeV = 10−21MP . (8.127)

This requires
m

φ̃
> 10−14 (8.128)

in reduced Planck-scale units. The value of mφ̃ used here (∼ 10−8) satisfies this
bound with ease. There is then an entropy increase of

� =
(

T̃R

T̃D

)3

∼ m−1
φ̃

φ̃2 ∼ 108φ̃2. (8.129)
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Table 8.2. Event sequence when oscillations of the Polonyi field begin before the inflaton
vacuum energy density has decayed.

Time (t) ρφ(t) ρ
φ̃
(t) ρrad(t)

t f < t < t
φ̃
∼ m−1

φ̃
∼t−2 �ρ

φ̃
(t f ) 0

t
φ̃

< t < tD ∼ �−1
φ ∼t−2 ∼t−2 0

t = tD ∼ �−1
φ → ρrad(tD)

TR ∼ m3/2
φ M−1/2

P

tD < t < t̃D ∼ �−1
φ̃

0 ∼T 3 ∼T 4

t = t̃D ∼ �−1
φ̃

ρ
φ̃
(t̃D) → radiation

T̃R ∼ m3/2
φ̃

M−1/2
P

Whenever φ̃ is not very much greater than 1 in reduced Planck-scale units, this
is large and may dilute the baryon number density of the universe unacceptably.
In that case, a reheat temperature T̃R large enough to recreate the required baryon
number density is needed. For low-temperature baryogenesis,

T̃R � 100 GeV � 10−16MP (8.130)

is required and, using (8.126), this imposes the bound

mφ̃ � 10−10–10−11. (8.131)

In the model being studied here, mφ̃ ∼ 10−8 using (8.103), (8.104) and (8.89) and
so it should be possible to regenerate the baryon number by a low-temperature
mechanism. However, for other types of light fields with only gravitational
strength interactions, their masses may be too small for the entropy generation
problem to be solved in this way (and the entropy generation may also be larger).

8.6.2 Inflaton decays after Polonyi field oscillation

We consider next the alternative possibility [13, 14] that the inflaton vacuum
density does not decay until after the Polonyi field has already started to oscillate.
This might result in too low a reheating temperature to regenerate the baryon
number of the universe except with a low-temperature baryogenesis mechanism.
The sequence of events is summarized in table 8.2. Between the end of inflation
at t = t f and the start of Polonyi field oscillations at t = tφ̃ , the inflaton vacuum

energy density ρφ(t) decreases as t−2 and the Polonyi field vacuum energy density
ρφ̃ is essentially constant. Between t = tφ̃ and t = tD , the time at which the

inflaton vacuum energy density decays, both t = ρφ and t = ρφ̃ decrease as t−2.
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At t = tφ̃ , the inflaton vacuum energy has not yet decayed and this vacuum energy
density is an effective matter density controlling the expansion of the universe, as
discussed after (7.63). At this time, we expect

H ∼ t−1
φ̃

(8.132)

or one or two orders of magnitude greater, and we also have

ρφ = 3H 2 (8.133)

in reduced Planck-scale unit, from (7.41). Thus, at t = tφ̃ ,

ρφ ∼ 3m2
φ̃
. (8.134)

Also, at t = tφ̃ ,

ρφ̃ � 1
2 m2

φ̃
φ̃2 (8.135)

where we can approximate φ̃ by its value at t = t f because, to a good
approximation, φ̃ does not start to oscillate until t = tφ̃ . Consequently, because
ρφ and ρφ̃ have the same time dependence between t = tφ̃ and t = tD ,

ρφ̃(tD)

ρφ(tD)
= ρφ̃(tφ̃)

ρφ(tφ̃)
∼ 1

6
φ̃2. (8.136)

At t = tD , the inflaton vacuum energy density decays and so immediately
afterwards

ρφ̃(tD)

ρrad(tD)
∼ 1

6
φ̃2. (8.137)

For t < tD but greater than t̃D , the time at which the Polonyi field energy decays,
ρφ̃ decreases as T 3, whereas the radiation density decreases as T 4. Thus, for

t̃D < t < tD ,
ρφ̃(t)

ρrad(t)
= ρφ̃(tφ̃ )TR

ρrad(tφ̃ )T
∼ φ̃2TR

6T
(8.138)

where TR is the temperature to which the universe reheats when the inflaton
vacuum energy decays.

First, consider what would happen if the Polonyi field φ̃ were not to decay.
For nucleosynthesis to be able to recreate the 4He and deuterium densities diluted
by the increase in entropy due to inflaton decay, we must have TR larger than
1 MeV � 10−21MP . Since

TR ∼ m3/2
φ M−1/2

P (8.139)

as a consequence of (7.72) with �φ ∼ m3
φ M−2

P , it follows that

mφ � 10−14MP (8.140)
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at T = 2.7 K ∼ 10−31MP , and then, from (8.138), that

ρφ̃(t0)

ρrad(t0)
�

φ̃2

6
× 1010. (8.141)

To avoid ρφ̃ dominating the energy density of the universe and producing an
excessive expansion rate, we need

φ̃ � 10−5 (8.142)

in reduced Planck-scale units. Thus, there will be a problem if φ̃ is not very small
on the reduced Planck scale.

This suggests that there might be a problem with entropy generation in the
realistic case where φ̃ decays before 2.7 K is reached. We must decide first
whether or not the Polonyi vacuum energy density will dominate the energy
density of the universe at the moment of decay. At t = t̃D , when the Polonyi
field vacuum energy decays, from (8.138)

ρφ̃(t̃D)

ρrad(t̃D)
= φ̃2TR

6T̃D
(8.143)

Thus, we must next estimate the temperature T̃D at which this decay occurs. The
Polonyi field energy density ρφ̃ grows relative to the radiation energy density as

the temperature drops for tD < t < t̃D . We therefore approximate the time
dependence of the temperature by taking the energy density to be dominated by
ρφ̃ . Then, (

Ṫ

T

)2

=
(

Ṙ

R

)2

= 1

3
ρφ̃(t) = 1

3
ρφ̃(tD)

(
T

Tφ̃

)3

(8.144)

with solution

T =
 4T 3

φ̃

3ρφ̃(tD)

1/3

t−2/3. (8.145)

Using (8.116), (8.139) and (8.101), we see that

ρφ̃(tD) =
( tφ̃

tD

)2

ρφ̃(tφ̃ ) ∼ m6
φ

m2
φ̃

ρφ̃(t f ) ∼ 1

2
m6

φφ̃2 (8.146)

where we have also used tφ̃ ∼ m−1
φ̃

and tD ∼ �−1
φ ∼ m−3

φ . Now, from (8.145)

and (8.146),
T̃D ∼ m−1/2

φ m2
φ̃
φ̃−2/3. (8.147)

Returning to (8.118),

ρφ̃(t̃D)

ρrad(t̃D)
∼ 1

4
φ̃8/3m2

φm−2
φ̃
∼ 1

4
φ̃8/3T 4/3

R m−2
φ̃

. (8.148)
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The Polonyi vacuum energy density dominates the energy density of the universe
when this is greater than one. The condition for this is that

φ̃ � m−3/4
φ m3/4

φ̃
∼ T−1/2

R m3/4
φ̃

. (8.149)

Assuming that baryon number regeneration has to occur at reheating after the
inflaton vacuum energy has decayed to radiation, we require

TR � 100 GeV (8.150)

or, from (8.139),
mφ � 10−11MP � 107 GeV (8.151)

for electroweak baryogenesis. Also, to regenerate the 4He and deuterium densities
after destruction of these nuclei by the decay products of the Polonyi field φ̃, we
require

m
φ̃
� 10 TeV � 10−14MP (8.152)

much as in (8.140) for the dilaton.
If, for example, we take mφ = 10 GeV and mφ̃ = 10 TeV, then for φ̃ ∼ 1 in

Planck-scale units, from (8.143),

ρ
φ̃
(t̃D)

ρrad(t̃D)
∼ 1

4
× 106 (8.153)

so that the φ̃ vacuum energy density dominates the energy density of the universe.
The increase in entropy of the universe in reheating after the φ̃ vacuum energy
density decays is

� ∼
(

T̃R

T̃D

)3

∼ φ̃2m3/2
φ m−3/2

φ̃
(8.154)

where we have used (8.147) and T̃R ∼ m3/2
φ̃

. For the same choices of mφ and mφ̃ ,

and φ̃ ∼ 1, (8.154) gives
� ∼ 105 (8.155)

which, though quite large, may not be inconsistent with a sufficiently large baryon
number density surviving.

If, however, we take mφ̃ ∼ m1/2
3/2, as in the model being employed here,

then with φ̃ ∼ 1, ρφ̃(t̃D) � ρrad(t̃D) when TR � 106 GeV, corresponding

to mφ � 10−8MP , and the Polonyi vacuum energy density then dominates the
energy density of the universe at the moment of decay. (For lower values of TR

the Polonyi vacuum energy density does not dominate.) In that case, � is only
of order 1 for mφ ∼ 10−8MP and no dangerous entropy generation need occur.
Thus, the entropy generation problem is not present for moderate values of the
parameters when the inflaton vacuum energy decays after the Polonyi field has
started to oscillate.
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8.7 Exercises

1. Derive the effective potential of (8.3) from (8.1) using the superpotential
(8.2).

2. Derive the effective potential (8.10) for the superpotential (8.9) with minimal
kinetic terms.

3. Derive the effective potential (8.50) for a model of D-term inflation.
4. Check that the D-term inflation model effective potential (8.50) has a

minimum at φ+ = φ− = 0 when the inequality (8.51) is satisfied.
5. Estimate the minimum of the effective potential for the Polonyi field in the

presence of the inflaton field.

8.8 General references

The books and review articles that we have found most useful in preparing this
chapter are:

• Bailin D and Love A 1994 Supersymmetric Gauge Field Theory and String
Theory (Bristol: IOP)
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Chapter 9

Superstring cosmology

9.1 Introduction

For energies small compared to the string scale (which is of the order of
the Planck scale in weakly coupled heterotic string theories), heterotic string
theory in ten dimensions reduces to four-dimensional supergravity theory once
compactification of extra dimensions has taken place. Thus, the discussion
in chapter 8 also applies to heterotic string theory with special choices of
the superpotential and Kähler potential derived from specific string theories.
However, there are other aspects of string theory cosmology that go beyond
supergravity cosmology.

Superstring theories contain massless (in the first instance) fields, referred
to as the ‘dilaton’ and, more generally, ‘moduli’, whose effective potential
is flat. These are a field theory manifestation of degeneracies of the string
vacuum. In particular, if the compactification of the theory from ten dimensions
to four dimensions occurs on a six-dimensional torus, certain of these moduli,
the ‘T-moduli’, correspond to the freedom (before non-perturbative effects are
considered) to vary continuously the radii of the torus along the associated
axes. Similarly, the (expectation value of the) dilaton S is associated with
the freedom to redefine the strength of the gravitational coupling. The dilaton
and moduli fields are expected to obtain masses on the electroweak scale
when supersymmetry breaking occurs and a non-trivial effective potential is
generated. The supersymmetric partners of the dilaton and moduli (the ‘dilatino’
and ‘modulinos’) have a cosmology similar to the gravitino and can produce
unwelcome densities in the universe. The dilaton and moduli fields themselves
have a cosmology similar to the Polonyi field discussed in section 8.6 and can
produce excessive entropy by late decay. These problems will be discussed
in section 9.2 together with a possible solution through the thermal inflation
mechanism.

Another problem associated with the existence of the dilaton in particular is
the need for it to settle into a minimum of the effective potential. If this occurs
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only with difficulty, there can be adverse effects on inflation. This problem will
be discussed in section 9.3. On a slightly more positive note, the dilaton and
moduli fields with their flat potentials before supersymmetry breaking are possible
candidates for inflaton fields and this will be discussed in section 9.4.

The discussion up to this point in the chapter will assume that
compactification to four dimensions has already taken place. However, there
could be an era in the history of the universe during which all nine spatial
dimensions are still of comparable size. The cosmology of this era and how
it joins on to the era with just three large spatial dimensions will be discussed
in section 9.5. In particular, the question of why only three spatial dimensions
become large will be addressed.

All of this discussion is based on heterotic string theory. There are
also promising candidate theories based on type IIA or type IIB string theory,
containing extended solutions referred to as ‘D-branes’. The cosmology of D-
branes will be discussed in section 9.6.

Finally, in section 9.7 and section 9.8, we shall discuss two models for the
universe which allow there to have been an evolution of the universe prior to the
big bang. In the first of these models (pre-big-bang cosmology), the effect of
the (weakly-coupled) heterotic-string dilaton on the cosmological field equations
is exploited to obtain solutions with a growing positive Hubble parameter for
t < 0 driving inflation before the big bang. In the second model (the ‘ekpyrotic’
universe), strongly coupled string theory is employed. Novel cosmology emerges
from the existence of an 11th dimension in the dual M-theory which will be
discussed in section 9.8.

9.2 Dilaton and moduli cosmology

Before discussing the cosmological implications of the existence of the dilaton
and moduli fields and their supersymmetric partners, we give some arguments
that allow the masses of these fields to be estimated [1]. The supergravity effective
potential is given by (2.147). It is convenient here to rewrite this in terms of the
F-term field

Fi = eG/2(G−1)i
j G j (9.1)

and its adjoint
Fi ≡ (Fi )∗ = eG/2(G−1)

j
i G j (9.2)

in the notation of (2.148). Then

V = Fi F j Gi
j − 3eG . (9.3)

The mass of the dilaton (or modulus) field, denoted by φ for the moment, is found
by differentiating the relevant part of (9.3), namely

V = Fφ FφGφ
φ − 3eG + · · · . (9.4)
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This means that we need an estimate of Fφ at the absolute minimum of the
effective potential to estimate these masses.

First, because the dilaton and moduli fields have only gravitational strength
interactions, for any superpositions of the fields Gi

j ∼ 1 in reduced Planck-
scale units (MP = 1). Because V = 0 at the absolute minimum (for zero
cosmological constant), the square of the F-field responsible for supersymmetry
breaking, assumed to be a superposition of the dilaton and moduli F-fields, is of
order eG . Moreover, the gravitino mass is given by

m2
3/2 = eG0 (9.5)

where G0 is the value of G at the absolute minimum. Thus,

F2
i ∼ m2

3/2 (9.6)

for the supersymmetry-breaking F-field superposition. If there is more than one
superposition of the dilaton and moduli F-fields with a vacuum expectation value
(VEV), we shall assume that (9.6) holds for each superposition or some are
negligible. (With the usual definition of the scale of supersymmetry breaking
msusy, (9.6) is the statement

m2
3/2 ∼ m4

SUSY (9.7)

in reduced Planck-scale units.)
Returning to the dilaton and moduli masses,

m2
φ =

〈
∂2V

∂φ∂φ∗

〉
(9.8)

provided that the kinetic terms are minimal so that the φ-field does not need
rescaling. With V given by (9.4) and Fφ of the order given by (9.6), m2

φ is a

sum of terms of order eG0 and terms of order Fφ Fφ both of which are of order
m2

3/2. Thus, we might expect that

mφ ∼ m3/2 (9.9)

where φ denotes a dilaton or modulus field. Similar but somewhat more
complicated arguments can be made for the dilatino and modulinos. Detailed
calculations confirm these expectations [1].

The cosmology of dilatinos and modulinos, which are light fermions with
masses of order m3/2 with only gravitational strength interactions, resembles that
of gravitinos. The dilatinos S̃ will have a decay rate

�S̃ ∼ m3
S̃

M−2
P (9.10)

where mS̃ is the dilatino mass and a decay time

tS̃ ∼ �−1
S̃

. (9.11)
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To avoid 4He and deuterium abundances being modified by the decay products
of the dilatinos, we should insist on the temperature TS̃ at the time of dilatino
decay being larger than 1 MeV � 10−21MP . If we assume a radiation-dominated
universe during the period before the dilatons decay, then

TS̃ ∼ t−1/2
S̃

∼ m3/2
S̃

M−1
P . (9.12)

Thus, we require that
mS̃ > 10−14MP � 10 TeV. (9.13)

We expect the gravitino mass m3/2, which controls the sizes of soft
supersymmetry breaking masses for the matter fields, to be not greater than about
10 TeV to solve the hierarchy problem. This bound can just be satisfied, especially
given that mS̃ ∼ m3/2 is only a rough estimate. The same discussion applies to
the modulinos T̃i .

In any case, the cosmological problems that arise from the decays of light,
very weakly-interacting fermionic fields can be avoided if there is a period of
inflation, additional to the main period of inflation, to dilute this fermionic field
density. However, the reheat temperature after this period of inflation should not
be too high in order to avoid regeneration of the dilatino and modulino densities.
Thus, as discussed in section 8.5 for gravitinos, we should have a reheating
temperature

TR � 109 GeV (9.14)

so that any necessary regeneration of the baryon number density should occur
through low-temperature baryogenesis.

The cosmology of the dilaton S and moduli Ti fields resembles that of the
Polonyi scalar field discussed in section 8.6, and much of the calculation given
there is unmodified. We shall focus on the dilaton field S but the discussion of the
moduli fields Ti will be exactly similar. Consider first the case where the dilaton
field has started to oscillate before the inflaton decays. With a dilaton field energy
density at the end of inflation

ρS(t f ) � 1
2 m2

S S2 (9.15)

and assuming for the moment that the dilaton field does not decay, we find, as in
(8.115), that the requirement to avoid the dilaton field energy density dominating
the energy density of the universe today and producing too large an expansion rate
is

S ≤ (10−15 − 10−16)m−1/4
S . (9.16)

For
mS ∼ m3/2 ∼ 100 GeV–10 TeV ∼ (10−16–10−14)MP (9.17)

we get
S ≤ 10−11–10−12 (9.18)
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in reduced Planck-scale units, which is much smaller than the value expected
to be obtained when the effective potential for the dilaton is minimized in the
presence of the inflaton field or when the VEV of the dilaton is shifted by quantum
fluctuations during inflation. This value would instead be expected to be not many
orders of magnitude less than unity, much as for the Polonyi field. (See (8.99).)
Consequently, the dilaton field energy density would dominate the energy density
of the universe today.

In practice, S would be expected to decay but the previous discussion
suggests the possibility of excessive entropy production when the decay occurs.
The reheat temperature TS R when the dilaton field energy density decays is

TS R ∼ m3/2
S (9.19)

as a consequence of (7.72) with �S ∼ m3
S . For successful nucleosynthesis to

occur after reheating, we must have TS R � 1 MeV, which implies that

mS � 10−14MP = 10 TeV. (9.20)

There is then an entropy increase

� =
(

TS R

TS D

)3

(9.21)

where TS D is the temperature at which the dilaton decay occurs. In analogy with
(8.122),

TS D ∼ m11/6
S S−2/3. (9.22)

Thus,

� ∼ S2

mS
. (9.23)

For mS ∼ 10 TeV,
� ∼ 1014S2 (9.24)

in reduced Planck-scale units. When S is not much smaller than 1 in these units,
this is very large and may dilute the baryon number density of the universe
unacceptably. Then the reheat temperature TS R needs to be high enough for
regeneration of the baryon number density to be possible. This imposes the bound

mS � 10−10–10−11 (9.25)

as in (8.131). Thus,
mS � 107–108 GeV (9.26)

is required. This is not consistent with a dilaton mass of order m3/2. An exactly
similar discussion applies for the moduli.

As in the case of the Polonyi field, the problem is less severe in the case that
the inflaton vacuum energy density does not decay until after the dilaton field has
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already started to oscillate. If the dilaton field were not to decay then, following
the discussion leading to (8.141), to avoid ρS dominating the energy density of
the universe and producing an excessive expansion rate, we need S � 10−5. This
is not consistent with our expectation that S will not be very much less than unity
in reduced Planck-scale units. Thus, ρS will dominate the energy density of the
universe. This suggests that there might be a problem with entropy generation in
the realistic case where S decays before T = 2.7 K is reached. Then, following
the logic leading to (8.154), the increase in the entropy of the universe in the
reheating after the S vacuum energy density decays is

� ∼ m−3/2
S m3/2

φ S2. (9.27)

As discussed in section 8.6, electroweak baryogenesis can occur at the reheating
after the inflaton vacuum energy density decays when

mφ � 10−11MP � 107 GeV (9.28)

and regeneration of the 4He and deuterium densities can occur following reheating
after the dilaton vacuum energy density decays if

mS � 10 TeV � 10−14MP . (9.29)

If, for example, we take mφ = 107 GeV and mS = 10 TeV, then even for S ∼ 1,
we get

� ∼ 105 (9.30)

which may not be so large as to be inconsistent with sufficient baryon number
density surviving. A similar discussion applies in the case of moduli fields.

As will be discussed next, even if too much entropy generation occurs when
the dilaton or modulus vacuum energy density decays, it may be possible to
regenerate the baryon number density (and 4He and deuterium densities) in an
extra stage of inflation referred to as ‘thermal’ inflation [2]. Such a period of
inflation is produced by a scalar field α with mass mα of order 100 GeV–1 TeV, an
approximately flat potential, and a VEV 〈α〉 which is large on the 100 GeV–1 TeV
scale. If this vacuum expectation value is too large, then such a field will produce
a Polonyi problem of its own and so we require an expectation value which is large
on the previous scale, but not too close to the Planck scale. So-called ‘thermal’
inflation takes place while the field α is trapped in the metastable minimum at the
origin by thermal effects. For this trapping to be possible, the temperature should
satisfy T � mα . Otherwise the field would sit at the zero-temperature minimum
away from the origin. For inflation to occur, the vacuum energy density should
dominate over the radiation energy density and so we should have

V0 � T 4 (9.31)

where V0 is the vacuum energy density of α in the minimum at the origin. It is
then possible for inflation to occur when

mα � T � V 1/4
0 . (9.32)
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Because RT is constant during inflation, the number Ne of e-folds ln(R f /Ri ) is
just ln(Ti/T f ). Thus,

Ne = ln

(
V 1/4

0

mα

)
. (9.33)

With mα ∼ 100 GeV–1 TeV, the period of thermal inflation begins before the
baryogenesis and nucleosynthesis that follow the earlier period of inflation. The
thermal inflation may then sufficiently dilute the dilaton or modulus density to
resolve problems with dilution of baryon number or 4He or deuterium density
caused by entropy generation when decay of the dilaton (or modulus) occurs.
(Recall that the dilaton or modulus vacuum energy density is behaving like a gas
of non-relativistic particles, as discussed before (7.64) in the case of the inflaton.)

9.3 Stabilization of the dilaton

As observed in section 9.1, the dilaton field has a flat effective potential before
supersymmetry breaking. Let us assume that spontaneous symmetry breaking is
due to non-perturbative ‘gaugino condensation’ in which a product of two gaugino
fields develops a VEV. The effective potential of the dilaton including this effect
may be calculated. It is then found that it is difficult for the dilaton to settle to a
minimum of the effective potential. Before discussing this problem, it is necessary
to review the form of the non-perturbative potential to be expected from gaugino
condensation.

The six unobserved spatial dimensions are usually compactified on an
‘orbifold’ or a Calabi–Yau 3-fold which generally has three T-moduli determining
the size of the compactified space in the three complex dimensions (as well as
complex-structure moduli specifying its shape). For simplicity, assume that there
is a single overall T-modulus field T (not to be confused with temperature).Thus,
we take

T = T1 = T2 = T3. (9.34)

If the various factors in the hidden-sector gauge group are labelled by the index a,
the non-perturbative gaugino condensate superpotential Wnp is of the form (see,
for example, [3] and references therein)

Wnp =
∑

a

W a
np (9.35)

with
W a

np = dae24π2S/baη(T )−6. (9.36)

In (9.36), η(T ) is the Dedekind eta function, ba is the renormalization group
coefficient for the ath factor of the hidden-sector gauge group including a
contribution due to hidden-sector matter, da is a numerical cofficient and so-called
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‘Green-Schwarz terms’ have been omitted. The Kähler potential for the dilaton
and moduli fields is

K = ln(S + S̄)− 3 ln(T + T̄ ). (9.37)

Then, the effective potential V derived from (2.132) is given by

(S + S̄)(T + T̄ )3V =
∣∣∣∣Wnp − (S + S̄)

∂Wnp

∂S

∣∣∣∣2 − 3|Wnp|2

+ 3

∣∣∣∣Wnp − (T + T̄ )
∂Wnp

∂T

∣∣∣∣2 . (9.38)

The non-perturbative superpotential should be chosen such that

Re S ∼ 2 (9.39)

at the global minimum of the potential, because of the connection between Re S
and the value gstring of the gauge coupling constant at the string scale

Re S = 2g−2
string. (9.40)

In particular, if the ath factor in the hidden-sector gauge group is SU(Na) and
there are hidden-sector matter fields in Ma copies of Na + N̄a fundamental
representations, then

ba = −Na + 1
3 Ma (9.41)

and

da =
(

1

3 
Ma − Na

)
(32π2e)3(Ma−Na )/(3Na−Ma )

(
Ma

3

)Ma/(3Na−Ma )

. (9.42)

It is not possible to satisfy (9.39) with a single condensate but with two
condensates minimization of the effective potential gives

Re S � 0.17
N2 M1 − N1 M2

3N2 − M2 − 3N1 + M1
(9.43)

which allows (9.39) to be satisfied for many choices of the integer parameters,
together with yielding a realistic value of the gravitino mass m3/2 given by the
value of eG/2 at the minimum, as in section 9.5. There is also scope to tune the
parameters to obtain V = 0 at this minimum and so zero cosmological constant.

The dilaton stabilization problem [4] is a result of the peculiar shape of the
potential V illustrated schematically in figure 9.1. If Re S starts larger than 2,
there is only a very small region of Re S which allows it to roll to the desired
minimum at Re S = 2. If Re S starts smaller than 2, the very steep potential
causes it to roll over the very low barrier, failing to be trapped at Re S = 2
unless it starts very close to Re S = 2. Thus, trapping the dilaton in the desired
minimum requires fine tuning of the initial conditions. (Strictly, we should correct
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V

Re S2

Figure 9.1. Representative two-condensate effective potential for ReS. The depths of the
minima and height of the maximum are very small.

the discussion to allow for Re S having non-minimal kinetic terms. This makes
little difference.)

However, the situation is drastically altered by several effects [5, 6] not
included in the original treatment. First, the thermal energy density modifies
the Hubble parameter and if the thermal energy density is large compared to the
dilaton energy density, this can create sufficient ‘friction’ to allow the dilaton to
roll into the Re S = 2 minimum of V for a considerable range of initial values
of Re S. Second, the dilaton couples to the energy density of matter and gauge
fields and, third, Re S couples to the axion field, which is the imaginary part of S.
We shall focus here on the first of these effects.

For a homogeneous real scalar field φ with minimal kinetic terms and
effective potential V (φ), as in (7.33),

φ̈ + 3H φ̇ + V ′(φ) = 0. (9.44)

We now want to allow for contributions to the Hubble parameter from the thermal
energy density of matter fields or radiation. We shall take the field φ to have a
potential of the form

V (φ) = V0e−λφ (9.45)

in reduced Planck-scale units and shall discuss later how this relates to the dilaton
field. The pressure pε and energy density ρε of the matter fields or radiation
satisfy an equation of state

pε = (ε − 1)ρε (9.46)

where ε = 1 for a matter-dominated universe and ε = 4/3 for a radiation-
dominated universe during the rolling of φ towards the minimum of its potential.
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Then
H 2 = 1

3 (V + 1
2 φ̇2 + ρε) (9.47)

is the generalization of (7.40) and (7.41), in reduced Planck-scale units. Using
(9.47) and (9.44),

Ḣ = −1

2
φ̇2 + 1

6H
ρ̇ε . (9.48)

Also, from the energy–momentum conservation equation (1.45),

ρ̇ε = −3H (pε + ρε) (9.49)

so that
Ḣ = − 1

2 (φ̇2 + ρε + pε). (9.50)

This ignores any interaction other than gravitational of φ with matter fields. These
equations can be solved analytically for the asymptotic form of φ in the case of
very steep potentials

λ2 > 3ε. (9.51)

The field φ increases at first but the ‘friction’ corresponding to the Hubble
constant then freezes φ at a near-constant value φ̃0 for a time, where

φ̃0 = φ0 +
√

6

3(2− ε)
ln

(
1+ x0

1− x0

)
(9.52)

and

x0 ≡ φ̇0√
6H0

(9.53)

with φ0, φ̇0 and H0 denoting initial values. Finally, φ approaches the asymptotic
form

φ(t) = 1

λ
ln

(
2λ2V0

9H 2
0 (2− ε)ε

)
+ 3ε

λ
ln R(t) (9.54)

where R(t) is the scale factor (‘radius’) of the universe. The approach to
the minimum is then slow and, after oscillations about the minimum with an
exponentially damped amplitude, φ settles to its minimum.

Let us now apply these considerations to Re S, taken for the moment to have
minimal kinetic terms. In the region Re S < 2 but not too close to Re S = 2
where the minimum has been produced by the balancing of two terms, the non-
perturbative superpotential may be approximated by a single term W a

np with S-
dependence:

W a
np ∼ e−�a S (9.55)

where

�a = 24π2

Na − 1
3 Ma

(9.56)
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is positive and has the smaller value. Then, the parameter λ in (9.45) is given by

λ = 2�a. (9.57)

A more careful treatment [5] with the correct non-minimal kinetic terms for Re S
makes very little difference to (9.54), with φ replaced by Re S.

This discussion is valid provided that Re S is able to attain the asymptotic
form of solution before passing through the minimum. Sufficient conditions [5]
are to take the initial value of Re S, denoted by Re S0, between the constant term
in (9.54) and the value at the minimum Re Smin ∼ 2, and also an initial velocity
for Re S such that the constant value Re S̃0, in the sense of (9.52), is also less than
Re Smin. (In practice, the minimum we are trying to reach is at a smaller value of
Re S than the adjacent maximum, and so we must start with Re S < Re S0 to have
any chance of ending up in the minimum.) Thus, we require

1

λ
ln

(
2λ2V0

9H 2
0 (2− ε)ε

)
< Re S0 < Re Smin (9.58)

and an appropriate initial velocity for Re S.

9.4 Dilaton or moduli as possible inflatons

A priori, the dilaton or moduli fields (for an orbifold or Calabi–Yau
compactification) are good candidates for inflaton fields [7] because their
potential is completely flat to all orders in string perturbation theory. Non-
perturbative effects, such as gaugino condensation, can provide a non-trivial
effective potential. As we shall see shortly, if the dilaton or modulus field is
to be used as the inflaton, it is necessary to assume that the superpotential is the
sum of two components. (See, for example, [8].) One of these components has
a large scale and gives an effective potential with unbroken supersymmetry and
zero cosmological constant at the global minimum when the other component
is neglected. This large-scale component is responsible for driving inflation
when the dilaton or modulus expectation value is in a flat region away from the
minimum. The other component has a much smaller scale and is responsible for
supersymmetry breaking in the low-energy world. It is the former component
of the superpotential that we are interested in here. Neglecting the low-energy
component of the superpotential, it is convenient to write the effective potential
for the dilaton S in the form

V = µ4 F(S, S̄) (9.59)

where we are using reduced Planck-scale units, and F(S, S̄) is of order 1. To
obtain density perturbations consistent with the COBE data, we require

µ ∼ 1016–1017 GeV (9.60)
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as in (7.115). This contrasts with a scale of

(m3/2MP )1/2 ∼ 1010–1011 GeV (9.61)

for an effective potential due to the superpotential responsible for low-energy
supersymmetry breaking with soft supersymmetry breaking masses on the scale
of 102–103 GeV. This is the reason for assuming that the superpotential is the
sum of two components. (It should be noted that the discussion of the previous
section employed gaugino condensate superpotentials that had been designed to
be responsible for low-energy supersymmetry breaking.) All of this discussion
applies equally to the use of a modulus field as the inflaton.

Though it is a very attractive idea, it has proved difficult to find a realization
of it in practice. Multiple gaugino condensate potentials for the dilaton, such
as discussed in the previous section, tend to be too steep in the Re S direction
for inflation to occur. If, instead, the overall modulus field T is employed as
the inflaton, with a superpotential consistent with the modular invariance of an
orbifold compactification, up to 20 e-folds of inflation can be obtained. However,
this does not appear to be possible when we demand that the effective potential has
a minimum with unbroken supersymmetry and zero cosmological constant [9].

9.5 Ten-dimensional string cosmology

Heterotic string theory begins as a ten-dimensional theory with the need for six
dimensions to be compactified to provide us with the observed four-dimensional
world (except in the case of direct constructions in four dimensions, such as the
free-fermion construction). An attractive possibility is that the compactification
of the six extra dimensions has a cosmological origin. In what follows we shall
treat all spatial dimensions as being wrapped on a torus with all dimensions
initially on the Planck scale. We shall study a mechanism, due to Brandenberger
and Vafa [10], that naturally results in three of the spatial dimensions becoming
very large, corresponding to a flat space, and the rest of the spatial dimensions
remaining on the Planck scale. The dilaton plays a crucial part.

As discussed in section 9.3, we expect the dilaton to acquire a mass of the
order of the electroweak scale, or one or two orders of magnitude larger, when
supersymmetry breaking occurs. For consistent cosmology, it is crucial that the
dilaton does acquire a mass, because it is a scalar field with only gravitational
strength interactions, and a massless field of this kind is inconsistent with solar
system observations. However, there is no a priori objection to the dilaton having
been massless in the early stages of the universe before supersymmetry breaking
at a temperature of around 100 GeV.

It will be assumed that the gravitational (metric) field and the dilaton field
are slowly varying (adiabatic approximation) so that it is a good approximation to
keep only the leading derivatives in the effective action. It will also be assumed
that N spatial dimensions are large dimensions with time dependence, while the
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remaining Nc spatial dimensions are static compact dimensions. In the case of
the heterotic string,

N + Nc = 9. (9.62)

Eventually we want N = 3 but we shall leave N general for now. The effective
action for the gravitational field and the dilaton is then (up to a multiplicative
constant)

S0 =
∫

dN+1x
√|G|e−2φ(� + 4G AB∂Aφ∂Bφ) (9.63)

where G AB is the metric tensor, G = det[G AB ], � is the curvature scalar for
the (N + 1)-dimensional space with A = 0, 1, . . . , N and φ is the dilaton. In
the case of N = 3, the connection with the value of the gauge coupling constant
gstring at the string scale is gstring = eφ and the connection with the dilaton field of
section 9.3 is Re S = 2e−2φ . (The antisymmetric tensor field in the supergravity
multiplet is being ignored for simplicity.) All spatial dimensions will be taken
toroidal with periodic length ai(t) for i = 1, 2, . . . , N . Write

ai (t) = eλi (t). (9.64)

The metric is given by

ds2 = dt2 −
N∑

i=1

a2
i (t)(dx i )2. (9.65)

Keeping G00 general for the moment, and fixing it to 1 later so that we do not
lose the field equation obtained by varying with respect to G00, the curvature
scalar (exercise 1) is

� = −G00
[ N∑

i=1

(λ̇i )
2 +

( N∑
i=1

λ̇i

)2

+ 2
N∑

i=1

λ̈i − Ġ00
N∑

i=1

λ̇i

]
. (9.66)

It is convenient to define

� ≡ 2φ −
N∑

i=1

λi (9.67)

which absorbs a factor for the volume of the space because

e−2φ
√|G| = √

G00 e−�. (9.68)

The action of (9.63) is then (exercise 2)

S0 = −
(∫

dN x

)∫
dt
√

G00e−�G00
[ N∑

i=1

(λ̇i )
2 − (�̇)2

]
(9.69)
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In general, a thermal contribution ST (from the gas of string modes in thermal
equilibrium) should be added to the action. It has the form

ST =
(∫

dN x

)∫
dt
√

G00 F
(
λi , β

√
G00

)
(9.70)

where F is the free energy and β = T−1 in units where the Boltzmann constant
kB = 1. The complete action is

Stot = S0 + ST . (9.71)

Varying this action with respect to �,λi and G00 gives (exercise 3), after
combining field equations,

(�̇)2 −
N∑

i=1

(λ̇i )
2 = e�E (9.72)

λ̈i − �̇λ̇i = 1
2 e� Pi (9.73)

�̈−
N∑

i=1

(λ̇i )
2 = 1

2 e�E . (9.74)

The thermodynamics that has been employed here is as follows. The free energy
is

F = E − T S (9.75)

where E is the energy and S is the entropy with

S = −
(

∂ F

∂T

)
V
= β2

(
∂ F

∂β

)
V

. (9.76)

The pressure in the i th direction is

Pi = −
(

∂ F

∂λi

)
T

. (9.77)

As a consequence of (9.75) and (9.76),

E = F − T

(
∂ F

∂T

)
V
= F + β

(
∂ F

∂β

)
V

. (9.78)

With this functional dependence of F ,

E = F + 2
∂ F

∂G00
(9.79)
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where we have set G00 = 1 at the end. From (9.72)–(9.74), we may deduce
(exercise 4) that

Ė +
N∑

i=1

λ̇i Pi = 0 (9.80)

β−1 Ṡ = Ė −
N∑

i=1

λ̇i
∂ F

∂λi
= Ė +

N∑
i=1

λ̇i Pi . (9.81)

Combining these, we have
Ṡ = 0 (9.82)

Thus, entropy is conserved.
In the first instance, S is a function of β and the λi . In principle, we can solve

(9.82) to obtain β as a function of the λi . Then, E can be written as a function
E(λ) of the λi alone, where, for the moment, λ denotes the λi collectively. When
the entropy is constant,

Pi = −
(

∂ E

∂λi

)
T

. (9.83)

To solve the equations (9.72)–(9.74), we need some knowledge of E(λ). For
the moment we ignore the contribution of winding modes. The properties of
E(λ), now assumed to be a function of a single λ when the λi have a common
value, have been studied using the microcanonical ensemble [10]. It is T-duality
symmetric, i.e. symmetric under the replacement of ai (t) by a−1

i (t) so that

E(λ) = E(−λ). (9.84)

For λ ∼ 0, the so-called ‘Hagedorn region’, E(λ) is almost constant. For
sufficiently large λ, only massless string modes contribute to the partition
function, corresponding to a radiation-dominated universe. Then E(λ) has the
exponential behaviour

E(λ) ∼ e−λ. (9.85)

Between these two limiting cases there is incomplete knowledge of E(λ).
However, it is known that E decreases with |λ| for λ close to zero and this is
believed to be correct for all λ.

This is enough information to see that a radiation-dominated era is
approached as time increases if �̇ starts with a negative value. The argument
is as follows. Because E is positive, (9.72) implies that �̇ can never become
zero, so that �̇ can never change sign. Also, (9.74) implies that �̈ is positive.
Consequently �̇ increases and if it starts negative, it remains negative and
approaches zero as t → ∞. Now consider equation (9.73). Using (9.83), and
assuming that λi = λ for all i , (9.73) is

λ̈− �̇λ̇ = − 1
2 e�E ′(λ) (9.86)
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(9.86) can be interpreted as the equation of motion for a particle with position λ

moving in a potential e�E(λ) with a damping term, because �̇ < 0. Since the
potential decreases as |λ| increases (ignoring the λ dependence of �), λ slides
towards increasing values of λ. The radius of the toroidal space is a(t) = eλ(t)

and, hence, as λ increases a increases, when λ > 0. (There is a duality between
large and small values of a(t) and, hence, between positive and negative values
of λ, as noted in (9.84)). Thus, we need only discuss λ > 0.) Since the spectrum
of a string theory is known, the entropy can be calculated at a given temperature
T in terms of the radius a(t). We know that entropy is constant. Therefore, a
relationship between a(t) and T can be calculated numerically that ensures this.
As |λ| decreases, it is found that T increases towards a limit referred to as the
‘Hagedorn temperature’. As |λ| increases, T falls until the massive string modes
go out of equilibrium and we enter a radiation-dominated era controlled by the
massless string modes, as in the standard model of the universe.

We now ask the question: ‘Why is the number N of large spatial dimensions
equal to 3?’ A possible explanation turns on the presence of winding modes in
string theories compactified on a torus. (Remember that we have taken all spatial
dimensions to be toroidal.) Because of the periodic nature of a torus, the closed-
string boundary conditions for the spatial bosonic degrees of freedom Xk(τ, σ )

can be satisfied when

Xk(τ, σ + π) = Xk(τ, σ )+ 2π Lk (9.87)

where centre-of-mass coordinates xk on the torus have the identification

xk ≡ xk + 2π Lk (9.88)

where Lk are referred to as ‘winding numbers’ and are proportional to the torus
radius [11]. String modes with non-zero values of Lk are referred to as winding
modes. If pk is the centre-of-mass momentum of the string degree of freedom
Xk , the mass-squared of a string state includes (pk + 2Lk)2 and (pk − 2Lk)2. As
the radius of the torus increases, the squared mass of a winding mode increases.

The idea is that string winding modes, unlike other matter densities, will
oppose expansion of the dimensions of the universe. The reason for this is that,
in the presence of winding modes, the behaviour of E(λ) is very different from
that discussed earlier. As just discussed, the mass squared of any winding mode
increases as the square of the winding number, for large values of the torus radius,
and so as the square of the torus radius. This effect results in E(λ) increasing as
eλ. Roughly, the growth of E with λ in (9.86) means that λ̈ < 0 (up to a damping
term) so that λ̇ eventually becomes negative, λ starts to decrease and the radius
of the universe starts to decrease. In this way, the winding modes first stop the
expansion of the universe and then reverse it.

This argument is not quite correct because of the e� term in (9.86). As
discussed earlier, if �̇ starts negative, it remains negative so that � decreases
with time. Thus, treating λ as the position of a particle, the strengthening of the
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potential with increasing λ as the universe expands can be offset by the behaviour
of e�. A more careful treatment shows that this does not affect the outcome.

Once the universe starts to contract, the momentum modes, which have
behaviour dual to the winding modes, play a crucial role. They make a
contribution to E(λ) that increases as λ decreases and oppose the contraction.
In this way, the universe is caused to oscillate between some minimum radius and
some maximum radius within a few orders of magnitude of the Planck scale.

The question then is how the universe can ever expand to a large scale.
The answer is that string winding modes can annihilate totally or partially into
momentum states (with complete annihilation of winding number occurring
between winding modes with equal and opposite winding number). In this way
they are able to reach thermal equilibrium with other string states. In thermal
equilibrium the number of winding modes becomes small as the torus radius
increases and winding-mode masses increase. However, it is difficult to reach
equilibrium if the winding modes find it difficult to collide to annihilate. A
collision corresponds to the two-dimensional world surfaces of the two states
intersecting. Generically, this does not occur when the dimensionality N+1 of the
extended spacetime in which the winding modes move is greater than 2+ 2 = 4.
Thus, for N + 1 > 4, thermal equilibrium is not achieved and the winding modes
stop the the universe expanding much beyond the Planck scale. However, for
N + 1 ≤ 4, the winding modes annihilate readily and thermal equilibrium is
reached resulting in a low density of winding modes. The universe is then able to
expand to a large scale.

This argument provides a partial explanation of the three-dimensional nature
of our observed universe. If the universe starts to expand in some number N > 3
of (spatial) dimensions, then the expansion is stopped by the winding modes.
It then oscillates for a while before expanding again in some number N of
dimensions that may differ from the first time. This may happen many times
until finally the universe starts to expand in some number N of dimensions with
N ≤ 3. Then, the expansion continues. Of course, this only explains why N ≤ 3
and not why N = 3. Therafter, the discussion of the earlier part of this section,
which neglected winding modes, applies and the universe evolves to a standard
radiation-dominated universe.

9.6 D-brane inflation

The discussion so far in this chapter has been in the context of weakly coupled
heterotic string theory. Alternative models of particle theory can be obtained from
type II superstring theories because of the existence of extended so-called ‘Dp-
brane’ solutions which occupy p+1 dimensions of spacetime. (See, for example,
[12] and references therein.) As well as closed strings, the theory contains open
strings which are constrained to have their endpoints on Dp-branes. Chiral matter
can be obtained from open strings whose endpoints are on Dp-branes located at an
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orbifold fixed point in the compact dimensions. We shall assume that this orbifold
is a product of three two-dimensional tori with points on the tori identified under
the action of a discrete Z N or Z M × Z N group.

Models with the gauge fields of the standard model (up to some U(1) factors)
and the massless matter content of the standard model (up to some vector-like
matter) have been obtained by employing D3-branes and D7-branes located at
fixed points. The presence of D7-branes as well as D3-branes is necessary to
satisfy certain ‘twisted tadpole’ cancellation conditions, which are required by
a consistent string theory and, among other things, ensure non-Abelian gauge
anomaly cancellation. The models also contain D3-antibranes and D7-antibranes
which are needed to satisfy untwisted tadpole cancellation conditions. The chiral
matter states are associated with open strings with their endpoints on D3-branes
or with one endpoint on a D3-brane and the other on a D7-brane. In such theories,
the string scale and the compactification scale do not necessarily coincide and low
string scales are possible.

An important aspect of such constructions is that the Dp-branes and Dp-
antibranes can be prevented from moving from the fixed points in some models
by the requirement that the twisted-tadpole conditions are always satisfied. Then,
the brane–antibrane separations are fixed except to the extent that they share in
the contraction or expansion of a toroidal space when the radius of space varies.
Thus, a modulus field in the associated low-energy supergravity theory whose
expectation value is a brane–antibrane separation is not a candidate inflaton.
However, possible candidates are the moduli scalars Ti , i = 1, 2, 3, the real parts
of which are associated with the radii Ri of the three tori in the form

ti ≡ Re Ti = eφ M2
s R2

i (9.89)

where Ms is the string scale and φ is the ten-dimensional dilaton. The four-
dimensional dilaton S is also a candidate. Models of inflation have been
constructed [13] in which S or one of the Ti provides the inflaton while the other
moduli (Ti or S) are frozen by some unidentified mechanism.

To discuss such models of inflation, we now require the form of the effective
potential V as a function of the unfrozen modulus field. It is convenient to use
T-duality with respect to all directions simultaneously:

Ri → α′

Ri
i = 1, 2, 3 (9.90)

where
α′ = M−2

s (9.91)

to map D3-branes into D9-branes and D7-branes into D5-branes. We need the
potential due to the tension in the branes. This is proportional to the volume of
the branes and, for a theory of D9-branes and D5-branes, is of the form

V = N9V9 +
3∑

i=1

N5i V5i (9.92)
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where N9 is the number of D9-branes, and N5i is the number of D5i -branes,
i.e. the number of D5-branes which wrap the i th torus (as well as living in four-
dimensional spacetime). The potential V9 due to the D9-branes is of the form

V9 = τ9 R2
1 R2

2 R2
3 (9.93)

with the D9-brane tension
τ9 = α9 M10

s e−φ (9.94)

where α9 is a dimensionless constant. Also, the potential due to the D5i -branes is
of the form

V5i = τ5 R2
i (9.95)

with the D5-brane tension
τ5 = α5 M6

s e−φ (9.96)

and α5 a dimensionless constant. These potentials can be rewritten in terms of the
real parts of the four-dimensional dilaton S and the Ti moduli fields:

s ≡ Re S = M6
s e−φ R2

1 R2
2 R2

3 (9.97)

ti ≡ Re Ti = M2
s e−φ R2

i for i = 1, 2, 3. (9.98)

Then,

V = M4
s

[
N9k9s +

3∑
i=1

N5i k5i ti

]
(9.99)

where k9 and k5i are dimensionless constants of order 1. There is also a
contribution to the potential from the exchange of massless bulk states, such as
the graviton, which we are neglecting here. It can be shown that this is small
compared to the retained terms when the moduli are large.

To apply this potential to the study of inflation, it is convenient to recast it
in terms of fields with canonical kinetic terms. After Weyl rescaling to remove
the factor of e−2φ in front of the curvature scalar (displayed in (9.63)), the kinetic
terms for moduli are

�kinetic = 1

4
M2

P

√|g|gµν

(
∂µ ln s∂ν ln s +

3∑
i=1

∂µ ln ti∂ν ln ti

)
(9.100)

the Weyl rescaling being
gµν → λgµν (9.101)

with

λ = M2
P e2φ

M8
s R2

1 R2
2 R2

3

. (9.102)

These kinetic terms arise from the curvature scalar

� ≡ Gab Rab (9.103)
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where a, b = 0, 1, . . . , 9 and Gab is of the form

Gab = diag[gµν(x),−R2
1(x)δmn,−R2

2(x)δrs,−R2
3(x)δuv] (9.104)

where x denotes the four-dimensional spacetime coordinates. In the first instance,
the kinetic terms are then given in terms of R1, R2 and R3. After the Weyl
rescaling (9.101), (9.102), these are recast in the form (9.100) in terms of s and
ti . The potential is then rescaled by a factor λ2 to give

V = M9
P

(
k9 N9

t1t2t3
+ k51 N51

st2t3
+ k52 N52

st1t3
+ k53 N53

st2t1

)
. (9.105)

If, for example, we now freeze the moduli t1, t2 and t3 and treat s as the
inflaton, then the inflaton field X with canonical kinetic terms is given by

s = exp

(√
2X

MP

)
. (9.106)

The potential for the inflaton is of the form

V = κ0 + κ1e−
√

2X/MP (9.107)

where κ0 and κ1 are constants

κ0 = k9 N9 M4
P

t1t2t3
and κ1 = k51 N51

t2t3
+ k52 N52

t1t3
+ k53 N53

t2t1
. (9.108)

We can now study slow-roll inflation with this potential in the usual way. The
slow-roll parameters ε and η are defined in (7.184) and (7.185). In the present
case,

ε � κ2
1

κ2
0

e−2
√

2X/MP and η � 2κ1

κ0
e−
√

2X/MP (9.109)

when X � MP . Whenever X � MP , the parameters ε and η are small and
slow roll ocurs. Thus, slow roll is generic for large values of the modulus which
is playing the role of the inflaton. This approximation also allows us to be in the
low-energy field theory limit which requires weak coupling eφ � 1.

The next question to be addressed is when inflation ends. For κ1 < 0, the
potential is such that X (which is certainly positive in this approximation) will
decrease with time and, eventually, the slow-roll conditions will no longer be
satisfied if |κ1/κ0| � 1. Conversely, for κ1 > 0, X increases and there is no end
to slow roll. However, as X grows, s grows, and either φ diminishes or one of
the Ri diminishes. If the latter, then at least one of the Ri can become smaller
than the string scale and low-energy field theory and the validity of the low-
energy potential V break down. In this case, there is a striking mechanism which
could end inflation. There can be a critical value of a radius at which a tachyon
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appears in the spectrum. Then, inflation ends in a version of hybrid inflation. In
some orbifold models a brane–antibrane pair then annihilates to produce a single
brane with one dimension more than the original brane, wrapped around this extra
dimension, which is stable at a smaller radius. The reheating is then controlled by
the difference in tension between the brane–antibrane pair and the single brane.

As to the number of e-folds of inflation, it does not appear possible [13] in the
models described earlier to obtain a sufficient number of e-folds, except for large
values of the N5i . In that case, the approximation of retaining only the tension
term in the potential breaks down and even including exchange of single bulk
states (e.g. the graviton) in the brane–antibrane interaction may not be sufficient.
However, this problem may be overcome [13] when the compactified dimensions
form an orientifold rather than an orbifold. Then, there still remains the difficulty
that we have had to freeze all but one of the Ti moduli or dilaton fields arbitrarily.

An alternative type of brane model (see, for example, [14] and references
therein) is based on intersecting D-branes with chiral matter living on (some of)
the intersections, in the sense that it is associated with open strings that begin and
end at a particular intersection of two D-branes. This type of model also provides
a satisfactory model of inflation [15] up to a point but with the same difficulty of
having to freeze all but one of the moduli discussed earlier.

9.7 Pre-big-bang cosmology

The presence of the dilaton in the heterotic string theory action allows for a
possible alternative origin for inflation in a period of evolution of the universe
before the big bang [16]. The basic idea is that it may be possible to join together
two solutions of the cosmological field equations, one for t < 0 and one for
t > 0, with the following properties. The t < 0 solution is chosen to have the
dilaton φ growing to produce a growing Hubble parameter H , so that the universe
expands rapidly (dilaton-driven inflation). This is an even more rapid expansion
than the more familiar inflation driven by an approximately constant H . The
t > 0 solution, conversely, has |φ| decreasing and φ rolling into a minimum of its
potential. Thereafter, there is FRW cosmology (with a constant dilaton), possibly
higher-dimensional, with compactification to three spatial dimensions to follow.

As t = 0 is approached from t < 0, we shall see that it is possible for the
value of φ to be positive and diverge logarithmically, which pushes the universe
into a strongly-coupled regime because e2φ controls the strength of the gauge
and gravitational interactions in heterotic string theory. At some point, weakly-
coupled string theory breaks down and non-perturbative effects may allow the
transition between the t < 0 and t > 0 weakly-coupled solutions. We shall now
fill in a little of the detail of this idea.

The effective action for the gravitational field and dilaton is as in (9.63).
We shall leave the number of spatial dimensions N arbitrary, allowing for the
possibility that the cosmology starts higher-dimensional with compactification to

Copyright © 2004 IOP Publishing Ltd



270 Superstring cosmology

three dimensions to follow, e.g. cosmology could start with the full nine spatial
dimensions of the heterotic string. With the ansatz of (9.65) and (9.64), the action
is given by (9.69) leading to the field equations (9.72) to (9.74). Making the
simple assumption that the universe starts empty, the thermal contributions may
be dropped and the field equations simplify to

(�̇)2 =
N∑

i=1

(λ̇i )
2 (9.110)

λ̈i = �̇λ̇i (9.111)

�̈ =
N∑

i=1

(λ̇i )
2 (9.112)

where λi is defined in (9.64) and � in (9.67).
For t 
= 0, there are solutions of (9.110)–(9.112) with (exercise 5)

�(t) = �0 − ln |t| and λ(t) = λ0 ± 1√
N

ln |t| (9.113)

in the isotropic case λi = λ for all i . Equivalently, there are solutions

2φ(t) = 2φ0 + (±√N − 1) ln |t| and a(t) = a0|t|±1/
√

N (9.114)

in the isotropic case ai = a for all i . The corresponding Hubble parameter is

H = ȧ

a
= ± 1√

Nt
(9.115)

which diverges as t → 0. The two solutions for λ arise because of the T-duality
symmetry of the equations (9.110)–(9.112) under the transformations

λi → −λi �→ � (9.116)

or, equivalently,

ai → 1

ai
φ → φ −

N∑
i=1

ln ai (9.117)

which exchanges small and large scales accompanied by an obligatory action on
the dilaton. The equations and their solutions also possess the usual t → −t
symmetry of FRW cosmology. Because of the singularity at t = 0, in principle,
we may pair either of the solutions for t < 0 with either of the solutions for t > 0.
The hope is that non-perturbative effects will allow a smooth matching at t = 0.
However, after the big bang, we require that the universe is expanding so, for
positive t , we must choose the solution with a(t) ∝ |t|+1/

√
N . Now consider the
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H

t

Figure 9.2. Hubble parameter for a possible solution linking the pre-big-bang era to the
post-big-bang era.

behaviour of the solution obtained by pairing this positive-time solution with the
negative-time solution in which the universe is also expanding. That is

2φ(t)− 2φ0 =
{

(
√

N − 1) ln t t > 0
−(
√

N + 1) ln(−t) t < 0

a(t) ∝
{

t1/
√

N t > 0
(−t)−1/

√
N t < 0

(9.118)

and

H (t) = 1√
N |t| . (9.119)

As advertised earlier, (for N > 1) this gives φ(t) growing for all t 
= 0, whereas
the Hubble parameter H , which is positive on both branches of the solution, is
growing for t < 0 but decreasing for t > 0 (see figure 9.2): φ(t) is discontinuous
and diverges logarithmically as t → 0. This ‘pre-big-bang’ cosmology provides
an alternative to inflation due to a scalar field rolling in a potential. There is no
potential for the dilaton φ but nevertheless the universe inflates when t < 0.

The biggest difficulty, perhaps, is that it is not known whether the pre-big-
bang and post-big-bang eras can be joined together smoothly (a form of the
graceful exit problem) because the region close to t = 0 requires non-perturbative
string theory. It has also been suggested that fine tuning [17] is involved in a
successful pre-big-bang scenario. One aspect of this problem is that as a result of
(9.118), when a(t) increases by many orders of magnitude while t < 0 to solve
the problems normally solved by inflation, eφ(t) also increases by many orders of
magnitude. However, as observed after (9.63), eφ is gstring. This we expect to
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be of order unity in the post-big-bang universe and so the initial value of φ must
be tuned to be very small. Moreover, the density perturbations due to the dilaton
(playing the role of the inflaton here) are not consistent with the COBE data.
However, it has been argued that this last problem can be overcome if the density
perturbations required by COBE are due to an axion field in a non-perturbative
potential. (See the third reference in [16].)

9.8 M-theory cosmology—the ekpyrotic universe

Another example of a cosmology in which there is a period of evolution of the
universe prior to the big bang can be obtained by considering the collision of the
so-called ‘boundary branes’ which occur in M-theory. We first review briefly the
M-theory description of strongly-coupled heterotic string theory [18].

Strongly-coupled heterotic string theory in ten dimensions is known to be
dual to a theory in 11 dimensions. If the strongly-coupled heterotic string theory
has six dimensions compacified on a Calabi–Yau manifold or orbifold X , then the
dual theory has seven dimensions compactified on X × S1/Z2. Here S1 is in the
X10 direction with

−πρ ≤ X10 ≤ πρ (9.120)

and the identification
X10 ∼ X10 + 2πρ. (9.121)

The action of the Z2 group is

Z2 : X10 →−X10. (9.122)

Consequently, there are two fixed points under the action of Z2, namely

X10 = 0 and X10 = πρ. (9.123)

Because of the Z2 symmetry (9.122), the quotiented circle is equivalent to a line
segment of length πρ.

The low-energy limit of this 11-dimensional theory is 11-dimensional
supergravity. The E8 gauge fields of the observable sector (and the observable
chiral matter) live on one end of the line segment (on one four-dimensional
boundary brane) while the E8 gauge fields of the hidden sector live on the other
end of the line segment (on the other boundary brane). The gravitational fields
propagate in the 11-dimensional ‘bulk’. The dilaton expectation value eφ in the
ten-dimensional theory is reinterpreted, up to a numerical factor, as the length of
the line segment in the 11-dimensional theory in M−1

s units.
The idea behind M-theory cosmology [19] (the so-called ‘ekpyrotic

universe—the universe being consumed by fire and reconstituted out of fire,
as in Stoic philosophy) is that two four-dimensional boundary branes may
move towards each other and collide before separating again. The size of the
fifth dimension (which is the separation of the two four-dimensional boundary
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branes) goes through zero when the branes collide. Since the separation of the
boundary branes is related to the dilaton in the dual description, the dilaton
dynamics discussed in the previous section may be employed taking (the number
of uncompactified spatial dimensions to be) N = 4 (and ignoring the six
compactified dimensions.) As before, we require the universe to be expanding
after the big bang but now we choose the alternative solution in which the universe
is contracting before the big bang. Thus, the solution corresponds to the choice
λ = +(1/

√
N ) ln |t| on both branches. For N = 4, this gives

2φ(t)− 2φ0 = ln |t| a(t) ∝ |t|1/2 so that H = 1

2t
. (9.124)

This choice is qualitatively different from the one made in pre-big-bang
cosmology. There, before the big bang, φ(t) is positive and diverges as t → 0, so
that the gauge and gravitational interactions, whose strength is controlled by e2φ ,
become strong and the vicinity of t = 0 is in a strongly-coupled regime. Here,
φ(t) is negative near t = 0 and diverges as t → 0. Instead of strong coupling,
the vicinity of t = 0 is in a weakly-coupled regime. When the branes collide,
radiation modes are excited by the kinetic energy of the collision and a hot big
bang is triggered.

The ekpyrotic universe allows a new solution to the horizon problem. The
collision of the two boundary branes is a non-local event over a region much larger
than the Hubble radius. It is this collision that generates the temperature of the hot
big-bang universe. Thus, a large degree of homogeneity in the cosmic microwave
background radiation is to be expected. However, a number of difficulties in
trying to get the ekpyrotic universe to explain things normally explained by
inflation has been pointed out. (See [20] and references therein.)

9.9 Exercises

1. Derive the curvature scalar of (9.66).
2. Derive the action (9.69).
3. Obtain the field equations (9.72)–(9.44) from the action (9.69).
4. Derive the finite-temperature equations (9.80) and (9.81).
5. Derive the solutions of the cosmological field equations for pre-big-bang

cosmology (9.113).

9.10 General references

The books and review articles that we have found most useful in preparing this
chapter are:

• Bailin D and Love A 1994 Supersymmetric Gauge Field Theory and String
Theory (Bristol: IOP)
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Chapter 10

Black holes in string theory

10.1 Introduction

Besides ‘predicting’ general relativity as the effective low-energy (classical)
theory of gravitation, string theory also provides a (perturbative) quantum theory
of gravity. Since it is the only such theory known, one might hope that string
theory would offer insights into the quantum aspects of gravitation that are not
available elsewhere. This is indeed the case.

In 1971, Hawking [1] showed that area of the event horizon of a black
hole must increase with time. This prompted the observation that the area
of the event horizon is analogous to the entropy of a thermodynamic system.
It was subsequently shown that quantum mechanics requires that black holes
besides absorbing radiation must also emit it and that black holes are indeed
thermodynamic systems. Specifically, it was shown by Bekenstein [2] and
Hawking [3] that the entropy is proportional to the area of the event horizon.
Our experience with statistical mechanics as the microscopic theory underlying
thermodynamics leads us to expect that this entropy is associated with the
number of microstates of the (black-hole) system. It is precisely this aspect
that is illuminated by string theory. As we shall see, for certain black-hole
solutions of string theory, the number of microstates can be calculated, and the
resulting multiplicity reproduces precisely the Bekenstein–Hawking formula for
the entropy.

In the next section, we review the definition of the black-hole event horizon
and outline the proof that the area of its two-dimensional section cannot decrease.
In section 10.3, we show why quantum mechanics requires black holes to have a
temperature that is determined by their ‘surface gravity’ and entropy proportional
to the area of the (two-dimensional section of the) event horizon. The number of
perturbative microstates in string theory is evaluated in section 10.4 and shown to
be quite inadequate to explain the derived entropy of black holes. The special
class of black holes for which string theory is able to provide a microscopic
explanation of their entropy are (certain) ‘extreme’ black holes, which have both
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mass and charge (or, more generally, charges). These and their generalization
to five dimensions are discussed in the following section. To get black holes
from string theory, we need to find analogous solutions to the underlying classical
field theory. This is type II supergravity, which is described in section 10.6. It
involves the field strengths of certain (antisymmetric) ‘Ramond–Ramond’ gauge
form-fields. These lead to a generalized notion of electric charge, which, in
turn, indicates the existence of (non-perturbative) extended objects called ‘D-
branes’ which have non-zero Ramond–Ramond charges. This is described in
section 10.7. In section 10.8 we construct the (five-dimensional, extreme) black-
hole solutions, with three charges, that have an event horizon with non-zero area.
If we use this area in the Bekenstein–Hawking formula, the entropy of the black
hole is determined entirely by the (product of the) charges used. The non-zero
charges have an immediate interpretation in terms of underlying microstates and
the counting of these is done in section 10.9. The number of microstates obtained
agrees precisely with that predicted from the calculated Bekenstein–Hawking
entropy.

10.2 Black-hole event horizons

It is convenient to use mass units in which the Planck mass m P and, hence,
Newton’s constant GN , are unity: m P = G−1/2

N = 1. The most well-known
black-hole solution of general relativity is the Schwarzchild solution which gives
in spherical polar coordinates the line element outside of a spherical body of mass
M:

ds2 ≡ gµν dxµ dxν (10.1)

=
(

1− 2M

r

)
dt2 −

(
1− 2M

r

)−1

dr2 − r2 d�2
2 (10.2)

where
d�2

2 ≡ dθ2 + sin2 θ dφ2 (10.3)

is the line element on the unit two-sphere S2. The metric is singular at r = 2M
but this is merely a coordinate singularity. For example, a particle on a radial
timelike geodesic r = R(t) falls from its starting position at r = R(0) > 2M ,
through R = 2M , and reaches R = 0 in a finite proper time (exercise 1). On a
radial null geodesic,

dt2 =
(

1− 2M

r

)−2

dr2 ≡ (dr∗)2 (10.4)

where

r∗ ≡ r + ln

∣∣∣∣r − 2M

2M

∣∣∣∣ . (10.5)
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As r ranges from 2M to ∞, r∗ ranges from −∞ to ∞. Thus, d(t ± r∗) = 0
on radial null geodesics and the ingoing radial null (Eddington–Finkelstein)
coordinate is defined as

v ≡ t + r∗ = t + r + 2M ln
∣∣∣ r

2M
− 1

∣∣∣ −∞ < v < ∞. (10.6)

Using v as a coordinate instead of t gives

ds2 =
(

1− 2M

r

)
dv2 − 2dv dr − r2 dθ2 − r2 sin2 θ dφ2. (10.7)

This metric is defined initially for r > 2M , since the relation v = r + r∗(r) is
only defined for r > 2M . However, it can now be analytically continued to all
r > 0 and, in these coordinates, there is no singularity at r = 2M . (There is
a singularity at r = 0 where the curvature becomes infinite. Such a singularity
cannot, of course, be removed by a coordinate transformation.) At large values of
r , the light cones are almost Minkowskian and they allow a particle (or photon)
to move outwards or inwards on a timelike (or null) worldline. However, as r
decreases the lightcones gradually tilt over. When r ≤ 2M , 2dr dv ≤ 0 for all
non-spacelike (i.e. timelike or null) world lines. Since dv > 0 for future directed
world lines, it follows that dr ≤ 0, with equality for radial null geodesics when
r = 2M . When r < 2M , all non-spacelike curves necessarily move inwards
and hit the singularity at r = 0. Thus, if the massive body emits light from its
(spherical) surface at r = rB < 2M , the light never escapes to an observer in
the region r > 2M . Such an observer might infer the presence of the body from
its gravitational field but she could not see it. The hypersurface traced out in
spacetime by the spherical surface r = 2M is called the ‘event horizon’ of the
(Schwarzchild) black hole. The area of a two-dimensional section of the event
horizon is

AH = 4π(2M)2 = 16π M2. (10.8)

Let S(x) be a smooth function of the spacetime coordinates xµ and
consider a family of hypersurfaces S(x) = constant. The vectors normal to the
hypersurfaces are given by

lµ = f̃ (x)
∂S

∂xµ
(10.9)

where f̃ is an arbitrary non-zero function. If l2 = 0 for a particular hypersurface
� in the family, then � is said to be a ‘null’ hypersurface. So for the spherical
hypersurfaces S ≡ r = constant, with the black-hole metric (10.7),

l2 = gµνlµlν = grr f̃ 2 = −
(

1− 2M

r

)
f̃ 2. (10.10)

Thus, the event horizon r = 2M is a null hypersurface and (exercise 2)

lµ|r=2M = gµνlν |r=2M = − f̃ δµ
v . (10.11)
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We can think of the metric (10.2) or (10.7) as being that which arises
following the spherically symmetric collapse of a star with mass M � 1.5–
2m�. It is instructive to consider a series of light flashes emitted near the centre
of the collapsing star, which is assumed to be made of transparent matter. In
the early stages, the density of the star is low, the wavefront of the light will be
approximately spherical and its area proportional to the square of the time elapsed
since the emission of the flash. However, the gravitational attraction of the stellar
matter through which the light is passing deflects neighbouring rays towards each
other, reducing the rate at which they are diverging from each other. In other
words, the gravitational effect of the matter is to focus the light and to reduce the
area of the wavefront from what it otherwise would have been. In the early stages,
the wavefront continues to increase in area, crossing the surface of the collapsing
star and eventually reaching infinity. As the collapse continues, the matter density
increases and so does the focusing effect, until a critical wavefront emerges from
the surface of the star with zero divergence. Outside of the star, this wavefront
will remain constant and will be the surface r = 2M discussed earlier whose
spacetime evolution is the event horizon. It is the boundary of the spacetime
region from which it is not possible to escape to infinity. It is generated by null
geodesics which have no future endpoint but which do have past endpoints (at the
emission of the flash.) The divergence of these null geodesic generators is positive
during the collapse phase and zero in the final time-independent state. The area
of a two-dimensional section of the event horizon increases monotonically from
zero to the final value (10.8). Subsequent flashes will be focused so much by the
stronger gravitational focusing that their rays begin to converge and the area of
the wavefront decreases.

Now consider what happens when a thin spherical shell of matter of mass δM
collapses from infinity at some later time and hits the singularity at r = 0. During
the collapse, the metric is spherically symmetric but, of course, time-dependent.
Afterwards, it will have the form (10.2) or (10.7) but with M replaced by M+δM .
Since δM is necessarily positive, the area of the two-dimensional section of the
event horizon must increase:

δAH = 32π MδM > 0. (10.12)

These results illustrate general results for black holes that are true even
without spherical symmetry. The focusing or converging effect that follows
from the fact that the gravitational mass is always positive can be described
quantitatively using the positive-definiteness of the energy density. Consider a set
of null geodesics, and let lµ = dxµ/dv be a null tangent vector to these geodesics,
where v is an affine parameter for the geodesic. At each point, we can define two
unit spacelike vectors aµ and bµ that are orthogonal to each other and to lµ. It is
convenient to define the complex vectors

mµ ≡ 1√
2
(aµ + ibµ) and mµ ≡ 1√

2
(aµ − ibµ). (10.13)
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Then

mµmµ = 0 = mµmµ = lµmµ = lµmµ and mµmµ = −1. (10.14)

The fact that the curves of this set are geodesics requires that

lµ;νmµlν = 0 (10.15)

where, as usual, the semi-colon indicates covariant differentiation. The average
rate of convergence of nearby null geodesics is encoded by the quantity

ρ ≡ lµ;νmµmν (10.16)

which is real provided that the null geodesics lie in a three-dimensional null
hypersurface, as we shall assume. Let � be the null hypersurface generated
by null geodesics with tangent vectors lµ and let �T be a small element of
a spacelike two-dimensional surface in � . We can move each point of �T a
parameter distance δv up the null geodesics. Then the area A of �T changes by

δA = −2Aρδv. (10.17)

Thus, as we should expect, the area decreases if the convergence ρ is positive.
The behaviour of ρ along the geodesics is determined from the Newman–Penrose
equations [4] which for an affine parametrization (so lνlµ;ν = 0) give

dρ

dv
= ρ2 + σ σ̄ + φ00 (10.18)

where
σ ≡ lµ;νmµmν and φ00 ≡ 1

2 Rµνlµlν. (10.19)

The Einstein field equations are

Rµν − 1
2 gµν� = 8πTµν (10.20)

where Tµν is the energy–momentum tensor. Thus,

φ00 = 4πTµνlµlν . (10.21)

The local energy density measured by an observer with velocity vector vµ is
Tµνv

µvν and it is reasonable to assume that this is always non-negative. Then,
from continuity, the ‘weak energy condition’

Tµνw
µwν ≥ 0 (10.22)

follows for any null vector wµ. With this assumption, (10.21) shows that φ00 ≥ 0
and then, from (10.18), that the effect of the matter is always to increase the
average convergence, i.e. to focus the null geodesics.
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For a general discussion of what can be seen from infinity and, therefore, of
the event horizon, we need to determine the light cone structure of spacetime. For
this purpose, it is useful to do a conformal transformation of the metric

gµν → �2gµν. (10.23)

Such a transformation leaves the light-cone structure unaffected but can be chosen
so as to compress everything near infinity and bring it to a finite distance. For
Minkowski space, the line element is

ds2 = dt2 − dr2 − r2 d�2
2. (10.24)

In light-cone coordinates u ≡ t − r and v ≡ t + r , this becomes

ds2 = du dv − 1
4 (v − u)2 d�2

2. (10.25)

Now define new coordinates p and q such that tan p = v and tan q = u with
p − q ≥ 0. Then

ds2 = sec2 p sec2 q[d p dq − 1
4 sin2(p − q) d�2

2] (10.26)

which shows that the Minkowski metric is conformally related to the metric
whose line element ds̄2 is in the square brackets. With a further coordinate
transformation p ≡ t ′ + r ′, q ≡ t ′ − r ′ the line element becomes

ds̄2 = dt ′2 − dr ′2 − 1
4 sin2(2r ′) d�2

2. (10.27)

Thus, Minkowski space is conformal to the region bounded by the null surfaces
�+ ≡ {t ′ + r ′ = π/2} and �− ≡ {t ′ − r ′ = −π/2}. �+ is the past light cone
of the point i+ = {r ′ = 0, t ′ = π/2} and �− is the future light cone of the
point i− = {r ′ = 0, t ′ = −π/2}. All timelike geodesics start at i−, representing
past timelike infinity, and end at i+, representing future timelike infinity. Null
geodesics start at some point on the surface �− and end at some point on �+.
We are interested in (black-hole) spacetimes that are asymptotically flat. This
means they must be ‘like’ Minkowski space near infinity, and so should have a
similar conformal structure at infinity. In fact, the conformal metric is, in general,
singular at the points i+ and i− but regular on the null surfaces �+ and �−.

Consider the set J−(S) consisting of a set S of spacetime points plus all
points from which S can be reached by future-directed non-spacelike curves. The
region of spacetime from which one can escape to infinity along a future directed
non-spacelike curve is, therefore, J−(�+), the causal past of future null infinity.
The boundary of this region J̇−(�+) is the general definition of the event horizon.
It is generated by null geodesics segments which may have past endpoints but can
have no future endpoints. Now, using the positivity of φ00, it follows from (10.18)
that

dρ

dv
≥ ρ2. (10.28)
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Suppose that the convergence ρ of neighbouring generators has a positive value
ρ0 > 0 at some point q on a generator of J̇−(�+), then ρ increases to infinity
within a finite affine distance �v ≤ 1/ρ0 to the future of q . The point r at
which ρ becomes infinite is a focal point at which neighbouring null geodesics
intersect. In other words, if the generators of J̇−(�+) ever start converging,
they are destined to have future endpoints within a finite affine distance. This
contradicts the previously stated property that such generators have no future
endpoints. It follows [1] that ρ ≤ 0 everywhere on the event horizon and,
therefore, from (10.17), that the area of the two-dimensional cross section cannot
decrease with time1. As already noted, this prompted the observation that this
area is analogous to the entropy of a thermodynamic system.

10.3 Entropy of black holes

In fact, the area of the two-dimensional section of the event horizon will remain
constant only if the black hole is in a stationary state. If the black hole interacts
with anything else the area always increases. In this respect, the area behaves
similarly to the entropy of a thermodynamic system. In favourable circumstances,
one can arrange that the increase in area can be made arbitrarily small, which
corresponds to nearly reversible transformations in thermodynamics.

During black-hole formation in the collapse of a star, the metric is strongly
time-dependent and a complete classification of all solutions has not been
found. However, the possible final stationary states have been identified. An
asymptotically flat metric is called stationary if there exists a Killing vector2 k
that is timelike near infinity (where it may be normalized such that k2 = 1). In
other words, outside of the horizon k = ∂

∂t , where t is a time coordinate. In these
coordinates, the general stationary metric has a line element of the form

ds2 = g00(x) dt2 + 2g0i(x) dt dxi + gi j (x) dxi dx j . (10.29)

A stationary metric is called static if it is also invariant under time-reversal, at
least near infinity. Thus, the general static metric has g0i = 0 and the line element
takes the form

ds2 = g00(x) dt2 + gi j (x) dxi dx j . (10.30)

1 It would be possible to escape this conclusion if the generators were prevented from reaching the
finite affine distance to the endpoint because of an intervening singularity. However, Hawking [5] has
shown, using the general requirements of asymptotic predictability, that this does not occur.
2 A general coordinate transformation x → x ′ is called an ‘isometry’ if the transformed metric
g′µν(x ′) is the same function of its argument x ′µ as the original metric gµν(x) was of its argument xµ.
The generators of such transformations may be found by considering an infinitesimal transformation
in which x ′µ = xµ + εξµ with ε � 1. This is an isometry if ξ satisfies ξµ;ν + ξν;µ = 0, and
any vector satisfying this is called a ‘Killing’ vector. We may equivalently write the Killing vector as
ξ = ξµ ∂

∂xµ .
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With modest assumptions about causality, it can be shown that the only static
(single) black-hole solution of the Einstein field equations is the (spherically
symmetric) Schwarzchild solution given in (10.2).

This result can be generalized to black holes with electric charge Q by
solving the Einstein–Maxwell equations. They are derived from the action

SE M = 1

16πGN

∫
d4x (−g)1/2[� − GN Fµν Fµν]. (10.31)

where Fµν is the electromagnetic field strength. Then the Einstein field equations
(10.20) have the energy–momentum tensor

Tµν = 1

4π

(
Fγ

µ Fνγ − 1

2
gµν Fγ δ Fγ δ

)
. (10.32)

The only static solution is the Reissner–Nordström (RN) solution with line
element

ds2 =
(

1− 2M

r
+ Q2

r2

)
dt2 −

(
1− 2M

r
+ Q2

r2

)−1

dr2 − r2 d�2
2 (10.33)

and gauge potential 1-form

A ≡ Aµ dxµ = Q

r
dt . (10.34)

Like the Schwarzchild metric, this has a curvature singularity at r = 0. For
M ≥ |Q|, there are coordinate (but not curvature) singularities at r = r± ≡ M ±√

M2 − Q2. This assumes that M ≥ |Q|, since otherwise there are no horizons
and the curvature singularity at r = 0 is ‘naked’. More generally, these results
can be extended to stationary black-hole solutions. The stationary solutions of the
Einstein equations are the (axially-symmetric) Kerr solutions, classified by two
parameters, the mass M and the angular momentum J . Generalizing to solutions
of the Einstein–Maxwell equations leads to the three-parameter Kerr–Newman
metrics:

ds2 = �− a2 sin2 θ

�
dt2 + 2a sin2 θ

r2 + a2 −�

�
dt dφ

− (r2 + a2)2 −�a2 sin2 θ

�
sin2 θ dφ2 − �

�
dr2 −� dθ2 (10.35)

where

� ≡ r2 + a2 cos2 θ and � ≡ r2 − 2Mr + a2 + Q2. (10.36)

The three parameters are M, a and Q. a is related to the total angular momentum
J by

a = J

M
. (10.37)
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If we allow magnetic charge P as well as the electric charge Q, we replace Q by

e ≡
√

Q2 + P2. (10.38)

The Maxwell 1-form is

A = Qr

�
(dt − a sin2 θ dφ)− P cos θ

�
[a dt − (r2 + a2) dφ]. (10.39)

The future and past event horizons are at

r = r± ≡ M ± (M2 − Q2 − a2)1/2 (10.40)

so that the future event horizon has area AH given by

AH = 4π[2M2 − Q2 + 2(M4 − M2 Q2 − J 2)1/2]. (10.41)

This can be rewritten as

M2 = AH

16π
+ 4π J 2

AH
+ π Q4

AH
+ Q2

2
. (10.42)

The first term on the right-hand side is the ‘irreducible’ part of M2 that is
irretrievably lost down the black hole. The second term is the contribution from
the rotational energy of the black hole and the third and fourth terms arise from
the electrostatic energy. The mass M , as opposed to M2, can also be written in an
elegant form due to Smarr [6]:

M = κ AH

4π
+ 2�H J +�H Q (10.43)

where, on the future event horizon, the surface gravity (i.e. the acceleration of
a static particle as measured at spatial infinity) is κ , the angular velocity is �H

and the co-rotating electrostatic potential is �H ; all of these are constant on the
horizon. If such a black hole is perturbed and settles down to another stationary
black hole with parameters M + dM , J + dJ and Q + dQ, then (exercise 4)

dM = κ

8π
dAH +�H dJ +�H dQ. (10.44)

Comparing this with the thermodynamical (first law) formula

dU = T dS + p dV + µ dN (10.45)

we see that if some multiple of the area AH of a section of the event horizon is
analogous to entropy, then some multiple of the surface gravity κ on the horizon is
analogous to the temperature. Bekenstein [7] suggested that these are not merely
analogues but, in some sense, actually are the entropy and temperature of the
black hole.
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However, if the black hole has a temperature, it should radiate a black-
body spectrum, thereby contradicting the defining property of a black hole that
it can absorb particles or radiation but not emit them. Hawking’s resolution of
this paradox noted that this absorption-only property is a feature of the classical
theory of gravitation. He showed that quantum mechanical effects cause black
holes to create and emit particles as if they were hot bodies with a temperature
Tbh given by

Tbh = κ

2π
. (10.46)

Then, from (10.44) the (Bekenstein–Hawking formula for the) entropy Sbh is

Sbh = 1
4 AH . (10.47)

The result is obtained by treating the spacetime metric classically but the
matter fields to which it is coupled are treated quantum mechanically. We should
expect this semi-classical approximation to be excellent except near a spacetime
singularity. In flat Minkowski spacetime, a massless real scalar field φ, for
example, satisfies the field equation ηµνφ;µν = 0 and φ can be expanded in terms
of annihilation and creation operators âi and â†

i as

φ =
∑

i

(âi fi + â†
i f ∗i ) (10.48)

where the { fi } are a complete orthonormal set of positive-frequency (complex)
solutions of the wave equation ηµν fi;µν = 0: the positive frequency is defined
with respect to the usual Minkowski time coordinate. The vacuum |0〉 is then
defined to satisfy

ai |0〉 = 0 ∀i. (10.49)

In a curved spacetime with metric gµν , the field equation becomes gµνφ;µν = 0
with the semi-colon indicating covariant differentiation. However, in general,
positive and negative frequencies have no invariant meaning in a curved spacetime
and the expansion of φ in annihilation and creation operators is not defined. In a
region of spacetime which was flat or asymptotically flat such an expansion can
be made, but if we have a spacetime with an initial flat region (1), followed by a
region of curvature (2), and then another flat region (3), the initial vacuum |01〉
will not be the same as the final vacuum |03〉. This will lead to the interpretation
that the time-dependent metric in (2) has led to the creation of a number of
particles of the scalar field φ. This is what happens in the core of a black hole [8],
hidden from outside observers by the event horizon. When the radius of curvature
of spacetime is smaller than the Compton wavelength of a given species, there is
an indeterminacy in the particle number, that is to say, particle creation. Although
these effects are negligible locally, they can have a significant influence on the
black hole over the lifetime of the universe.
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The most elegant derivation of the quantum result utilizes Feynman’s path-
integral formulation of quantum field theory [9]. In this, the generating function
W [J ] for the Green functions of the quantum field theory is a functional integral
over classical fields φ

W [J ] =
∫
�φ exp{iS[φ, J ]} (10.50)

where

S[φ, J ] =
∫

d4x [�(φ, ∂µφ)+ Jφ] (10.51)

is the action integral with � the Lagrangian density, and J a source current.
In the present context, the functional integral is over both matter fields φ and
metrics gµν . The latter should include both metrics that can be continuously
deformed to the flat metric as well as homotopically disconnected metrics such
as those of black holes. The evaluation of the action integral is problematic for
black-hole metrics because of the spacetime singularities they contain. However,
this difficulty can be surmounted by complexifying the metric and evaluating the
integral over a contour that avoids the singularities [10].

As an example, we take the Schwarzchild metric (10.2) which, as already
noted, has a coordinate singularity at r = 2M and a curvature singularity at
r = 0. The former can be removed by transforming to Kruskal coordinates in
which the line element has the form

ds2 = 32M3 e−r/2M

r
(dz2 − dy2)− r2 d�2

2 (10.52)

where

−z2 + y2 =
( r

2M
− 1

)
er/2M (10.53)

y + z

y − z
= et/2M . (10.54)

The singularity at r = 0 is now on the surface z2 − y2 = 1 but it can be avoided
by defining a new coordinate ζ = iz. Then the metric has the Euclidean form

−ds2 = 32M3 e−r/2M

r
(dζ 2 + dy2)+ r2 d�2

2 (10.55)

where now

ζ 2 + y2 =
( r

2M
− 1

)
er/2M (10.56)

y − iζ

y + iζ
= et/2M . (10.57)

Thus, on the contour where ζ and y are real, r is real and r > 2M . Further, on this
contour we define an imaginary time τ by τ = it and then (10.57) shows that τ =
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4M arg(y + iζ ) is an angular coordinate with period β ≡ 8π M . The functional
integral defining the generating function should, therefore, be over matter fields
and metrics with this periodicity in τ . But this is just the partition function Z for
a canonical ensemble of the fields at temperature T = β−1 = (8π M)−1. The
surface gravity κ for the Schwarzchild black hole is κ = (4M)−1, so that the
temperature is T = κ/2π in accordance with (10.46). (For the generalization
of this result to the Reissner–Nordström black hole, see exercise 7.) With this
established, it is clear that the black hole must have the entropy given by (10.47).
Nevertheless, it is an interesting excercise to verify this directly by evaluating the
action.

In order to obtain a finite result, it is necessary not only to compute the
(Euclidean) action by integrating over the previous imaginary time coordinate τ

but also over a finite region of space. In general, for a finite region � of D-
dimensional spacetime, the Einstein–Hilbert action must be supplemented by a
contribution evaluated on the boundary ∂� which allows variations of the metric
that vanish on ∂� but which might have non-vanishing derivatives normal to it.
In units where GN = 1, the action can be written as

S[g, 0] = 1

16π

∫
�

√−g�(g) dD x + 1

8π

∫
∂�

√−h B dD−1ξ (10.58)

where hab is the induced metric on ∂�

hab = ∂xµ

∂ξa

∂xν

∂ξb
gµν (10.59)

ξa are D − 1 coordinates on ∂�, which is specified by an equation of the form
f (xµ(ξa)) = 0. Up to a term C that depends only on the induced metric hab,
B = K +C is just the trace K of the extrinsic curvature (the second fundamental
form) Kab of the boundary ∂�:

Kab = ∂xµ

∂ξa

∂xν

∂ξb
nµ;ν (10.60)

where nµ is the unit outgoing normal to ∂� and the semi-colon denotes a
covariant derivative. Then

nµ = ±
∣∣∣∣gλν ∂ f

∂xλ

∂ f

∂xν

∣∣∣∣−1/2
∂ f

∂xµ
. (10.61)

For asymptotically flat metrics in D = 4 dimensions, where ∂� can be chosen
to be the product of the (imaginary) time axis with a 2-sphere of large radius R, it
is natural to choose the constant C so that the action is zero for the flat Minkowski
space metric ηµν . Then

B = K (g)− K (η). (10.62)

Since �(g) = 0, the action for the Schwarzchild black hole derives entirely from
the surface term in (10.58). In the case of a spherical surface, f (x) ≡ r − R = 0
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and we may use the remaining coordinates for the ξa . Then the unit outgoing
normal is

nµ = 1√|grr |δ
µ
r (10.63)

and

Kab = 1

2
nµ ∂gab

∂xµ
. (10.64)

For the Schwarzchild metric (10.2), this gives (exercise 8)

K (g) = 2R − 3M

R2(1− 2M/R)1/2 and
√−h = −i

(
1− 2M

R

)1/2

R2 sin θ

(10.65)
and then∫

∂�

√−h[K (g)− K (η)] d3x = −i4πβ

[
2R − 3M − 2R

(
1− 2M

R

)1/2
]

.

(10.66)
Thus, in the limit R →∞, the Schwarzchild action is

S[g(S), 0] = 1

2
iβM = iπ

κ
M. (10.67)

The general result [10] for Kerr–Newman metrics g(K N) of the form (10.35)
is that the action integral has the value

S[g(K N), 0] = iπ

κ
(M −�H Q). (10.68)

(The rotation does not affect the evaluation of the action.) The dominant
contribution to the path integral (10.50) comes from fields (in our case metrics
g) with the correct periodicity that minimize the action. Such fields are solutions
of the classical equations of motion and, in the present context, are the Kerr–
Newman metrics g(K N). Thus,

ln W [0] = ln Z � iS[g(K N), 0]. (10.69)

In a thermodynamic system, the partition function Z for a grand canonical
ensemble at temperature T = β−1 with chemical potentials µi associated with
conserved charges Ni is defined as

Z = Tr exp

[
− β

(
H −

∑
i

µi Ni

)]
(10.70)

and its logarithm is related to the free energy F by

ln Z = −β F = −β

(
E − T S −

∑
i

µi Ni

)
. (10.71)
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For the case we are considering in which β = 2π/κ , this gives

ln Z = −2π

κ
(M − T S −�H Q −�H J ) = −π

κ
(M − Q�H ) (10.72)

using (10.68) and (10.69) for the second equation. Thus

1
2 M = T S + 1

2�H Q +�H J. (10.73)

From Smarr’s formula (10.43), we also have that

1

2
M = κ

8π
AH + 1

2
�H Q +�H J. (10.74)

Then, comparing the two expressions, restoring the factors of �, c, GN and kB ,
and using

T = �κ

2πkB
= �c3

8πGN MkB

we deduce that the entropy is given by the Bekenstein–Hawking formula

S = c3 AH

4GN�
(10.75)

as anticipated in (10.47).
It is worthwhile pausing for a moment to reflect upon this extraordinary

result. We are accustomed to extensive quantities, such as the entropy of a
thermodynamic system, being proportional to the volume of the system. Yet here
the entropy is scaling as the surface area. The result generalizes to spacetimes
with dimension D as

S = c3 AD

4G D�
(10.76)

where AD is the (D − 2)-dimensional ‘area’ of the event horizon and G D is
the D-dimensional Newton constant. The entropy is thus essentially the horizon
area measured in Planck units. This area dependence is an example of the
‘holographic’ principle, and suggests that the fundamental degrees of freedom
describing the system may be characterized by a quantum field theory with one
fewer space dimensions and with an ultraviolet cut-off at the Planck scale [11].
We shall not pursue this intriguing suggestion further.

The identification of the Bekenstein–Hawking entropy with the physical
entropy of the black hole leads to two important puzzles. The first is the so-
called ‘information problem’. Hawking [12] showed that the outgoing radiation
from the radiating black hole is purely thermal and depends only on the conserved
charges coupled to long-range fields. This clearly entails a loss of information,
since two different, macroscopic objects having the same mass, a graduate student
and her supervisor, for example, falling into the black hole would, according
to an observer outside of the horizon, generate the same Hawking radiation.
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String theory provides a unitary, quantum theory of gravity, so information cannot
be lost. Thus, the information loss entailed in Hawking’s derivation must be
an artefact of the semi-classical approximation used. However, it is not clear
precisely where or how the approximation does breakdown nor, if it does, how
the information is returned. We shall not pursue this topic further either. Instead,
we turn to the second puzzle thrown up by the Bekenstein–Hawking result and
the one on which string theory has been able to shed some light, namely whether
there is an explanation of black-hole entropy in terms of microstates.

10.4 Perturbative microstates in string theory

Thermodynamics is only an approximation to a more fundamental description
based on the statistical properties of the microstates of the system. So the
fact that black holes have entropy suggests that this too should be understood
microscopically. Roughly speaking, a thermodynamic system with entropy S is
associated with a number eS of microstates of the system. For the Schwarzchild
black hole, with a horizon area given by (10.8), we see from (10.75) that the
entropy is Sbh = 4πGN M2/�c. For the moment, the only important feature is
that the associated number of states grows like eM2

. We might have hoped that
this approximates the number of perturbative string states with mass M . However,
this is not the case, as we shall now demonstrate.

It suffices to consider the open bosonic string. This has mode expansion [13]

Xµ = xµ + l2
s pµτ + ils

∑
n 
=0

1

n
αµ

n cos(nσ) (10.77)

where the oscillator coefficients α
µ
n are creation (annihilation) operators for

n < 0 (n > 0). In units where the string length scale ls ≡ 1/
√

πT is 1 (T is
the string tension), the mass eigenvalues are given by the eigenvalues of

1
2 M2 = N − 1 (10.78)

where

N =
∞∑

n=1

αi−nαi
n (10.79)

is the number operator; the sum over i is over the DT = 24 transverse dimensions
of the bosonic string. We wish to estimate the number of (degenerate) states dn

that have number-eigenvalue n. It is convenient to define a generating function

G(w) ≡ tr wN =
∞∑

n=0

dnw
n (10.80)
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with |w| < 1. Now

tr wN =
∞∏

m=1

tr wαi−mαi
m =

∞∏
m=1

(
1

1−wm

)24

. (10.81)

The function

f (w) ≡
∞∏

m=1

(1− wm) (10.82)

can be written as follows:

ln f (w) =
∞∑

m=1

ln(1−wm) = −
∞∑

m,p=1

wmp

p
= −

∞∑
p=1

wp

p(1− wp)
. (10.83)

When w ∼ 1, we can expand wp � 1 + p(w − 1)+ · · ·, so we can approximate
ln f (w) by

ln f (w) � −1

1−w

∞∑
p=1

p−2 = − π2

6(1−w)
. (10.84)

Thus,

G(w) ∼ exp

(
4π2

1−w

)
when w ∼ 1. (10.85)

The required degeneracy dn may be obtained from G(w) by performing a contour
integral

dn = 1

2π i

∮
�

G(w)

wn+1
dw (10.86)

where � is a closed loop around w = 0. The integrand vanishes rapidly as w → 1
and, when n is large, wn+1 is small near w = 0. Thus, for large n, there is a
saddle point near w = 1. In fact, the integrand is stationary when

1−w � 2π√
n + 1

� − ln w. (10.87)

It follows that
dn ∝ exp(4π

√
n) as n →∞. (10.88)

As a function of the mass M given in (10.78), the number of states ρ(M),
therefore, increases as

ρ(M) ∝ exp(
√

2π M) (10.89)

quite inadequate for the black-hole entropy requirement that the number of states
increases as

ρbh(M) ∝ exp(4πGN M2). (10.90)
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Nevertheless, using a similar treatment, we shall see later that string theory can
account for the entropy but the associated microstates are non-perturbative. Even
then, the accounting has so far only been successful for certain special types of
black hole called ‘extreme’ black holes. We therefore first describe the features of
extreme black holes that are important for understanding the microscopic origin
of their entropy.

10.5 Extreme black holes

It might, in any case, be objected that associating perturbative string states with
black holes is absurd. The former are obtained by quantizing the string in
a flat background spacetime. How could they be equivalent to a black hole?
Nevertheless, certain perturbative states can be associated with ‘extreme’ black
holes. We have already noted the constraint M ≥ |Q| for the Reissner–
Nordström (RN) metrics (10.33). Metrics saturating this constraint are called
‘extreme’ (RN) black holes. The usual (supersymmetric) perturbative states in
string theory satisfy M ≥ |Q| and states saturating this inequality are called ‘BPS
states’ after Bogomolnyi [14] and Prasad and Sommerfield [15]. They have the
crucial property that their mass cannot receive quantum corrections and it is this
that allows their association with extreme black holes. As the string coupling
strength gs increases, the mass M of the perturbative state is unaltered, since
it is independent of gs classically, and because of supersymmetry, there are no
quantum corrections. However, the gravitational field of the state is determined by
GN M (in four dimensions) and GN is proportional to g2

s . Thus, as gs increases,
the gravitational field increases, there is a back reaction on the perturbative state
and, eventually, it may be described by a curved spacetime with large curvature.
Thus, in principle at least, it might be possible to associate extreme black-hole
spacetimes with perturbative states.

The RN black hole looks like a natural starting place in the search for black
holes in string theory. We can think of the Einstein–Maxwell action (10.31) as the
bosonic part of the� = 2 supergravity theory in four dimensions. The (massless)
gravity supermultiplet contains the graviton, two (fermionic) gravitinos and a
vector boson called the ‘graviphoton’. The supersymmetry algebra is [13]

{Q A
α , Q Bβ̇} = 2δA

Bσ
µ

αβ̇
Pµ

{Q A
α , QB

β } = 2εαβ Z AB (10.91)

where Q A
α , with α = 1, 2 a (Weyl) spinor index and A = 1, 2, are the

two supersymmetry generators; the Qs are defined by Q Aα̇ ≡ (Q A
α )†; the

2 × 2 matrices σµ with µ = 0, 1, 2, 3 are defined by σµ = (I2, σ
i ), with

σ i (i = 1, 2, 3) the standard Pauli matrices; εαβ and the ‘central charge’ Z AB

are antisymmetric with ε12 = +1 and Z12 ≡ Z and, without loss of generality,
we may choose Z ≥ 0. (The graviphoton is a U(1) gauge boson coupled to a
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charge which is, in fact, the central charge.) For massive representations, we may
work in the rest frame where Pµ = (M, 0). Then it is easy to see (exercise 9) that
we may form two linear combinations aα and bα of the generators that satisfy

{aα, a†
β} = 4(M + Z)δαβ

{bα, b†
β} = 4(M − Z)δαβ

{aα, b†
β} = 0 = {aα, bβ} (10.92)

Up to a normalization factor, these are just the anticommutation relations obeyed
by two independent sets of fermion annihilation and creation operators. In
general, starting with a state |ψ〉 that is annihilated by aα and bα, we can
construct a total of 16 states using the creation operators a†

α and b†
α. Since

〈φ|{aα, a†
α}|φ〉 ≥ 0 for any state |φ〉 and, similarly, for bα, the ‘BPS bound’

M ≥ |Z | (10.93)

follows. The inequality is saturated by representations (BPS states) for which |ψ〉
is also annihilated by one set of creation operators (b†

α if Z > 0). Thus, such states
are ‘short’ massive representations of the supersymmetry algebra, since they are
constructed using only the a†

β creation operators. They are invariant under half of
the supersymmetry algebra.

The extreme RN black hole, obtained from (10.33) and (10.34) by setting
M = Q, is part of such a short hypermultiplet [16]. In this case, the two horizons
are both at r = M = Q and, defining ρ ≡ r−Q, we may write the solution in the
‘isotropic” form in which the spatial part of the metric is conformal to flat space:

ds2 = H−2 dt2 − H 2(dρ2 + ρ2 d�2
2) (10.94)

A = (1− H−1) dt (10.95)

where

H ≡ 1+ Q

ρ
. (10.96)

Both the temporal and spatial ‘warp’ factors (the factors multiplying the two
parts of the metric), as well as the electromagnetic vector-potential 1-form, are
determined by a single (harmonic) function H . Extreme solutions have the
important property that they are easily generalized to a case representing N
extreme black holes with charges qi = mi (with i = 1, 2, . . . , N) by replacing
the function H given in (10.96) by

H = 1+
N∑

i=1

qi

|r − r i | . (10.97)

By Gauss’ law, the total charge is Q =∑N
i=1 qi which, by the BPS bound, is also

the total mass

M =
N∑

i=1

mi =
N∑

i=1

qi = Q. (10.98)
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There is, thus, no binding energy between the individual black holes: the
gravitational binding is precisely cancelled by the electrostatic repulsion. Near
the horizon |ρ| � Q, the metric is approximated by AdS2 × S2 (exercise 11).
Thus, the extreme black hole may also be regarded as a soliton that interpolates
between the Minkowski vacuum when ρ � Q and Ad S2 × S2 when |ρ| � Q.
Generalizations of this special form, involving extra dimensions, extended objects
and other charges, are important in what follows.

In particular, the simplest example of a string-theory black hole for which a
microscopic description can be found is provided by a five-dimensional analogue
of the RN solution (10.33) and (10.34). The static, solution of the five-
dimensional Einstein–Maxwell equations outside of a (S3)-spherically symmetric
body of mass M and charge Q is

ds2 =
(

1− 2M

r2
+ Q2

r4

)
dt2 −

(
1− 2M

r2
+ Q2

r4

)−1

dr2 − r2 d�2
3 (10.99)

and the gauge potential 1-form

A = Q

r2 dt . (10.100)

(The r−2 dependence of the potential arises, of course, because there are now
four spatial dimensions.) As before, the extreme case where M = Q, with the
horizon at r = √

Q, may be cast in an isotropic form by using the coordinate
ρ ≡ √

r2 − Q. Then the horizon is at ρ = 0 and

ds2 = H−2 dt2 − H (dρ2 + ρ2 d�2
3) (10.101)

A = (1− H−1) dt (10.102)

where now the harmonic function is

H = 1+ Q

ρ2 . (10.103)

To connect this black hole with string theory, we need to consider the
effective field theory describing string theory in the low-energy limit. This is
a generalization of Einstein–Maxwell theory both with respect to the number of
spacetime dimensions (ten) and the fields involved. The fields involved are just
the massless modes that arise in (perturbative) string theory and the field theory
that desribes them is type II supergravity.

10.6 Type II supergravity

The massless states that arise in superstring theory include both bosons and
fermions. Black holes are, of course, solutions of the classical bosonic field
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equations, so we shall only be concerned with the bosonic degrees of freedom.
All closed superstring theories have massless (bosonic) modes associated with the
graviton field Gµν (a symmetric, traceless, rank-2 tensor), the Kalb–Ramond field
Bµν (an antisymmetric, rank-2 tensor) and the dilaton field φ. (The expectation
value of the dilaton fixes the string coupling constant gs via gs = 〈eφ〉.) In
type II superstring theories, these states arise in the NS–NS sector, i.e. they
are states which are constructed using the Neveu–Schwarz (half-integer-moded)
world-sheet fermion creation operators for both left- and right-movers. Massless
bosonic states also arise in the R–R sector: these are constructed using the
Ramond (integer-moded) world-sheet fermion creation operators for both left-
and right-movers. In type IIA (in the light-cone gauge), the R–R states transform
as [1] = 8v and [3] = 56 representations of the (transverse) SO(8) group,
where [n] denotes the totally antisymmetric rank n tensor. They may, therefore,
conveniently be represented by form fields C(1) and C(3) where

C(n) ≡ 1

n!Cµ1µ2...µn dxµ1 ∧ dxµ2 ∧ . . .∧ dxµn . (10.104)

The representations [n] and [8 − n] of SO(8) are the same, since they related
by the eight-dimensional ε-tensor, so we could as well represent these fields by
the forms C(7) and C(5) respectively. The tree-level Weyl invariance of the string
world-sheet action is preserved in the quantum string theory provided that the
(renormalization-group)beta functions associated with these fields all vanish. The
resulting equations amount to spacetime field equations for the background fields
that would arise from the effective action:

SIIA = 1

2κ2
10

{∫
d10x (−G)1/2e−2φ

�(G)

+
∫
[e−2φ(4dφ ∧ ∗dφ − 1

2 H(3) ∧ ∗H(3))− 1
2 F(2) ∧ ∗F(2)

− 1
2 F̃(4) ∧ ∗ F̃(4) − 1

2 B(2) ∧ F(4) ∧ F(4)]
}

(10.105)

where G ≡ det[Gµν],
2κ2

10 = (2π)7α′4g2
s (10.106)

is related to the ten-dimensional Newton constant by 2κ2
10 = 16πG10; α′ is

related to the string tension T by α′ = 1
2πT = 1

2 l2
s (where ls is the string length

scale); the dilaton 1-form is dφ ≡ ∂µφ dxµ, and the field-strength forms are
related to the potentials by

H(3) = d B(2) F(2) = dC(1) F(4) = dC(3)

F̃(4) = F(4) + C(1) ∧ H(3) (10.107)
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B(2) is the 2-form associated with the Kalb–Ramond field and the (10-
dimensional) Hodge dual ∗C(p) is

∗C(p) ≡ (−G)1/2

p!(10− p)!εν1ν2...ν10−pµ1µ2...µp Cµ1µ2...µp dxν1 ∧ dxν2 ∧ . . . ∧ dxν10−p .

(10.108)
It is important to bear in mind that the effective action (10.105) is an
approximation that is good in the low-energy limit α′ → 0. Higher-order terms
in the curvature are negligible provided �(G)α′ � 1. Roughly speaking, we
may say that the metric obtained by solving the lowest-order field equations is
only well defined on length scales l � ls . Note that all terms from the NS–
NS sector are multiplied by e−2φ , while terms from the R–R sector are not
coupled to the dilaton. This is a feature of the ‘string frame’ in which the action
(10.105) is written. To remove the dilaton factor from the curvature term, as in
the conventional ‘Einstein frame’ in which we have worked hitherto, we perform
the following field redefinition

Gµν = eφ/2gµν. (10.109)

Then the effective bosonic action in the Einstein frame is

SIIA = 1

2κ2
10

{∫
d10x (−g)1/2

�(g) − 1

2

∫
[dφ ∧ ∗dφ + e−φ 1

2 H(3) ∧ ∗H(3)

+ e3φ/2 F(2) ∧ ∗F(2) + eφ/2 F̃(4) ∧ ∗ F̃(4) + B(2) ∧ F(4) ∧ F(4).]
}

(10.110)

Type II string theory has � = 2 supersymmetry which, in 10 dimensions,
is realized by two Majorana–Weyl spinors Qα and Q̃α , each having have 16 real
components, so there is a total of 32 supersymmetry charges; Q acts on the right-
movers, and Q̃ on the left-movers. In type IIA theory, the two spinors have
opposite chirality, while type IIB both spinors have the same chirality. Thus,
type IIB is a chiral theory and type IIA non-chiral. The R–R states in type IIB are
also represented by form fields but now with components transforming as even-
ranked tensors C(0), C(2) and C(4)—the only subtlety is that the [4]+ = 35 of
SO(8) is self-dual. Analogous forms of the actions (10.105) and (10.110) may
also be written in terms of the field strengths F(1), F(3) and F(5) derived from
these R–R sector fields. Otherwise, the structure of the two forms of the action
is very similar to the type IIA case and we shall not reproduce them here. The
self-duality constraint (of the 5-form field strength) must be applied as an extra
condition on the solution of the field equations. The important point is that we
may consistently truncate the type IIA and type IIB effective actions to include
only the graviton, dilaton plus one field-strength tensor F(n) (or H(3)). This is
non-trivial because it must be verified that the (local) supersymmetry variation of
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the (zero) fermion fields is constantly zero. In the Einstein frame, this gives an
action of the form

Sn = 1

2κ2
10

{∫
d10x (−g)1/2

�(g) − 1

2

∫
[dφ ∧ ∗dφ + e−aφ F(n) ∧ ∗F(n)]

}
.

(10.111)
The value of a determines the coupling to the dilaton and may be read off from
the type IIA or IIB action. If the chosen field strength is H(3) deriving from
the NS–NS form B(2), then a = 1, whereas if the chosen field strength derives
from an R–R field, then a = (n − 5)/2. In the latter case, n = 2, 4, . . .

corresponds to type IIA, and n = 1, 3, 5, . . . corresponds to type IIB. The fact that
the type II string theory effective action (10.110) involves various field strengths
F(n) suggests that there should be some objects in the underlying string theory
that couple directly to the associated gauge form fields, just as an electron is
coupled by its charge to the Maxwell gauge potential Aµ. We shall see in the
next section that these objects are extended objects, p-branes, generally having p
spatial dimensions.

10.7 Form fields and D-branes

There is a geometric aspect of the antisymmetric forms which gives important
insights. A gauge field Aµ is coupled naturally to the world line Xµ(τ) of a
charged particle by a term in the action of the form

S ∼
∫

Aµ
dXµ

dτ
dτ. (10.112)

Under a (U(1)) gauge transformation, the vector potential 1-form

Aµ dxµ ≡ A(1) → A(1) + d�(0) (10.113)

where �(0) is a 0-form, i.e. a function. The field strength 2-form F(2) = dA(1) is
gauge invariant and satisfies

dF(2) = 0 (10.114)

which in four dimensions are two of Maxwell’s equations. The other two are

d ∗F(2) = ∗ J(1) (10.115)

where J(1) ≡ Jµ dxµ is the current 1-form. ∗F(2) and ∗ J(1) are the Hodge duals.
They are defined in ten dimensions in (10.108) but have an obvious generalization
to any dimensionality. In four dimensions, ∗J(1) is a 3-form, and we may use
Gauss’ theorem to find the electric charge Q in some spatial volume V3 enclosed
by a surface S2:

Q =
∫

V3

∗ J(1) =
∫

S2

∗F. (10.116)
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The string world-sheet Xµ(τ, σ ) has an analogous coupling to the Kalb–Ramond
field Bµν :

S ∼
∫

Bµνε
αβ∂α Xµ∂β Xν d2ξ (10.117)

where ξ0,1 are the two world-sheet coordinates (τ, σ ) respectively, εαβ is the
antisymmetric tensor with ε01 = −ε10 = −1. The gauge transformation

B(2) → B(2) + d�(1) (10.118)

leaves the 3-form field strength H(3) = dB(2) invariant and, analogously to
(10.114),

dH(3) = 0 (10.119)

Evidently, the string, and (some of) its excitations, have a non-zero value
of the NS–NS ‘electric’ charge associated with the Bµν gauge field. The
generalization of (10.116) is that the electric charge Q1 of the (one-dimensional)
string, associated with the 2-form gauge potential that is enclosed by the seven-
dimensional hypersurface S7, is given by

Q1 =
∫

S7

∗H(3). (10.120)

For a general antisymmetric (p + 1)-dimensional tensor gauge field, the
generalization of (10.112) and (10.117) is a term in the action of the form

S ∼
∫

Cµ1,µ2,...µp+1ε
α0α1...αp ∂α0 Xµ1∂α1 Xµ2 . . . ∂αp Xµp+1 dp+1ξ. (10.121)

This describes the coupling of the C(p+1) form gauge field to the (p + 1)-
dimensional world volume of an extended object having p spatial dimensions
(a p-brane) that has a non-zero value for the NS–NS or R–R electric charge
associated with the NS–NS or R–R sector gauge form fields described in the
previous section. Under a gauge transformation, a gauge form field transforms
as

C(p+1) → C(p+1) + d�(p) (10.122)

and the field strength F(p+2) = dC(p+1) is invariant. The electric charge of the
p-brane associated with the gauge potential, that is enclosed by the hypersurface
S8−p is, therefore, generally given by

Q p =
∫

S8−p

∗F(p+2). (10.123)

In addition to the field strength H(3) deriving from the Kalb–Ramond NS–
NS form field B(2), which we have already noted is coupled ‘electrically’ to
the string world sheet, the effective action for type IIA superstrings (10.105)
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or (10.110) also involves the field strengths F(n) (with n even) that derive from
the R–R fields C(n−1). However, unlike the NS–NS field B(2), these fields are
not coupled electrically to the string world sheet or its excitations. In fact, the
vertex operator for the emission of an R–R state involves the corresponding field
strength rather than the gauge field. It therefore vanishes at zero momentum and,
in consequence, the pertubative string states are electrically neutral with respect
to the charge associated with the R–R gauge fields. The foregoing discussion
suggests that the R–R field strengths F(n) are naturally associated with branes
having p = n−2 dimensions. Thus, type IIA superstring theory is also associated
with 0-branes (i.e. point particles), 2-branes (membranes) and 4-branes having
non-zero values of the associated R–R charges. Similarly, type IIB superstring
theory is associated with 1-branes (R–R strings), 3-branes and 5-branes. Since
the perturbative string states are neutral with respect to the charges associated
with the R–R fields, type II (A or B) string theory has to be augmented with
non-perturbative dynamical objects ( p-branes) that do have R–R charges, i.e.
electric charges associated with the R–R gauge form fields. The branes are called
‘Dirichlet p-branes’ or ‘Dp-branes’, because besides the closed-string sector,
there has to be an open-string sector in which the open string ends on these
p-dimensional hyperplanes [17, 18]. Hence, the open-string world sheet has
Dirichlet boundary conditions in the directions perpendicular to the branes. It
turns out that these Dp-branes do couple electrically to the associated (closed-
string) R–R fields, just as the fundamental string is coupled electrically to the
NS–NS Kalb–Ramond field Bµν . (More precisely, D-branes act as a source for
the associated R–R gauge fields.) It is this enlargement of (the theory formerly
known as) string theory that has led to the understanding of black-hole entropy in
terms of the associated microstates. We now turn to the construction of the explicit
black-hole solutions of the type II supergravity field equations whose entropy we
shall eventually be able to explain in terms of Dp-branes.

10.8 Black holes in string theory

As we have just noted, besides fluctuations of the string, string theory also
has various non-perturbative solitons. These are static, finite-energy solutions
of the classical field equations, just as RN black holes are static finite-energy
solutions of the classical Einstein–Maxwell field equations. It follows from the
previous discussion that a (‘black brane’) solution of the field equations deriving
from the action (10.111) for gµν , with non-zero F(n), will give the gravitational
field associated with an (n − 2)-brane having the associated NS–NS or R–R
charge. The field equations may be simplified by looking for solutions that have
Poincaré invariance in the p+ 1 = n− 1 dimensions associated with the p-brane
world volume and rotational invariance in the remaining transverse directions.
The coordinates xµ are, therefore, split into longitudinal ones, denoted xa with
a = 0, 1, . . . , p, and transverse ones, denoted yi with i = (p + 1), . . . , 9. The
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metric is then assumed to have the ‘warped’ form reminiscent of that encountered
earlier in (10.94) and (10.101):

ds2 = e2A(r)ηab dxa dxb − e2B(r)δi j dyi dy j (10.124)

where A and B are functions of the radial coordinate r = √
yi yi . When the p

spatial dimensions x1, . . . , x p are compactified the metric could then describe a
higher-dimensional black hole. For the dilaton, the ansatz is

φ = f (r) (10.125)

and, for the antisymmetric tensor, the assumption is

C012...p = eC(r) − 1. (10.126)

Then it turns out [19] that the classical field equations following from (10.111)
have a solution in which all of the functions A, B, C, f are determined by a single
harmonic function H (r):

ds2 = Hp(r)−(7−p)/8ηab dxa dxb − Hp(r)(p+1)/8δi j dyi dy j (10.127)

eφ = Hp(r)(3−p)/4 (10.128)

C(p+1) = [Hp(r)−1 − 1] dx0 ∧ dx1 . . .∧ dx p (10.129)

with

Hp(r) = 1+ L7−p
p

r7−p
. (10.130)

The length L p is defined by

L7−p
p ≡ 2κ10

√
πqp

(7− p)�8−p
(2π

√
α′)3−p (10.131)

where qp is an integer and

�n = 2π(n+1)/2

�((n + 1)/2)
(10.132)

is the volume of the unit n-sphere Sn . Using (10.109), the line element in the
string frame is

ds2 = Hp(r)−1/2ηab dxa dxb − Hp(r)1/2δi j dyi dy j (10.133)

with all other fields unaltered. In fact, these solutions are extreme solitons. As in
the case of the four-and five-dimensional black-hole solutions (10.33) and (10.99),
the mass Mp can be read off from the warp factor Hp(r). It is the coefficient of
2κ2

10/(7− p)�8−p that plays the rôle of Newton’s constant in this case. Thus,

Mp = qp

√
π

κ10

(
2π
√

α′
)3−p = qp

2π

gs

(
2π
√

α′
)−(1+p)

. (10.134)
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As expected of Dp-branes, the solitons we have found are non-perturbative
objects whose mass diverges as gs → 0. However, the fact that the mass scales as
g−1

s rather than g−2
s shows that they are unconventional solitons, quite unlike the

sphalerons whose action is given in (4.172), for example. The electric charge Q p

associated with the C(p+1) form gauge potential is given in (10.123):

Q p = 1

2κ2
10

∫
S8−p

∗F(p+2) = qp

√
π

κ10

(
2π
√

α′
)3−p

. (10.135)

Thus, the solitons have qp units of the fundamental Dp-brane R–R ‘electric’
charge µp ≡ (2π)−p(α′)−(p+1)/2/gs . Further, Mp = Q p , so, as claimed, these
are extreme states. There is an exact cancellation between the attractive forces
from NS–NS fields due to the mass of the soliton and the repulsive Coulomblike
electrical forces from the R–R fields due to its charge. As in the four-dimensional
case, this signals the fact that one-half of the supersymmetry charges are preserved
by the solution, which, in this case, is invariant under the 16 supersymmetry
charges

Qα + P Q̃α (10.136)

where Q and Q̃ act, respectively, on the right- and left-movers and P represents
the operator that reflects the directions yi transverse to the brane.

The first question then is: do any of these solutions give us the metric of
a black hole? If, with the benefit of hindsight, we try to obtain the extreme
five-dimensional RN solution given in (10.101), (10.102) and (10.103), then the
obvious first attempt is to choose p = 5. (We are, therefore, considering type IIB
superstring theory, since p is odd.) This gives four (transverse) spatial dimensions
y6, y7, y8, y9,

r2 ≡ (y6)2 + (y7)2 + (y8)2 + (y9)2 (10.137)

and the harmonic function H5(r) varies as r−2. As previously noted, if the five
longitudinal coordinates x1, x2, x3, x4, x5 are compactified (on a 5-torus T 5 say),
the metric resembles the five-dimensional RN black hole (10.101). However, the
warp factors in both the longitudinal and transverse directions are wrong and,
further, the dilaton is singular on the event horizon at r = rH = 0. (The
quantum states associated with a soliton are found by identifying the zero modes
(or collective coordinates) and quantizing them. This is not possible if the soliton
is singular.) Now, because the solitons are extreme, we may combine solutions
with different values of p, provided that (some) supersymmetry is preserved.
This requires that some of the supersymmetry charges (10.136) preserved by one
solution are also preserved by the other. Thus, if P1 and P2 represent, respectively,
reflection of the coordinates transverse to the p1- and p2-solitons, the preserved
supersymmetry charges satisfy

Qα + P1 Q̃α = Qα + P2 Q̃α = Qα + P1(P−1
1 P2)Q̃α (10.138)

and we see that the unbroken supersymmetries correspond to +1 eigenvalues of
P−1

1 P2. In general, this requires that the number of directions that are transverse
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to one brane and parallel to the other is a multiple of four and that a (p−2)-brane
can lie within a p-brane [20]. In the present context, therefore, we may combine
the p = 5 solitons described earlier with the p = 1 solitons, which we take
to have longitudinal coordinates x0, x1—the remaining four xa coordinates are
transverse to the 1-brane but parallel to the 5-brane. Then again just half of the
supersymmetry charges are preserved leaving just eight, corresponding to� = 2
supersymmetry in four dimensions.

In the first instance, the harmonic function H1 is a function of r̃ where

r̃2 ≡ (x2)2 + (x3)2 + (x4)2 + (x5)2 + r2 (10.139)

and varies as r̃−6. However, when the four directions x2, x3, x4, x5 are
compactified on T 4 ⊂ T 5 of volume V4, this has the effect of ‘smearing’ the
D1-branes. For example, compactifying the coordinate x2 on a circle of radius
R, the system of D1-branes is replaced by an infinite array of parallel branes
a distance 2π R apart. Because they are extreme states, the effective harmonic
function H̃1 for the array is easily written down and, for r � R, this function
varies as [r̃2 − (x2)2]−5/2, as if the D1-branes also wrapped x2. The effective
number of D2-branes is q1

√
α′/R. This result obviously generalizes to the case

in which all four coordinates are compactified on T 4. Then H̃1 varies as r−2, just
like H5(r), and is given by (10.130) with p = 5 but with the effective number q̃5
of D5-branes given by

q̃5 = (2π
√

α′)4

V4
q1. (10.140)

The composite system has warp factors that are given by the ‘harmonic
function sum rule’ [21]. With the proviso that the harmonic function H1 for
the D1-branes is replaced by the smeared version H̃1 just described, so that both
of the harmonic functions are functions of the overall transverse distance r , the
warp factors of the composite system are just the product of the separate warp
factors in each of the three sectors, namely parallel to both, transverse to both and
transverse to the 1-brane but parallel to the 5-brane. The dilaton is also given by
the product. Thus, for the combined system,

ds2 = H−1/4
5 H̃−3/4

1 [(dx0)2 − (dx1)2] − H−1/4
5 H̃ 1/4

1 [(dx2)2 + · · · + (dx5)2]
− H 3/4

5 H̃ 1/4
1 [(dy6)2 + · · · + (dy9)2] (10.141)

eφ = H−1/2
5 H̃ 1/2

1 (10.142)

C(5) = [H−1
5 − 1]dx0 ∧ dx1 . . . ∧ dx5 C(1) = [H̃−1

1 − 1]dx0 ∧ dx1.

(10.143)

Then the dilaton is, as required, finite at the event horizon. (We note, incidentally,
that this is only possible when at least two ‘charges’ are activated.) In addition,
the warp factor associated with the yi directions now approximates the H warping
in (10.101). Thus, ignoring the directions x2, x3, x4, x5 for the moment, all
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that is needed to complete the resemblance to (10.101) is a further warping
approximating H−1 in the x0-direction. In any case, in its present form,
the metric does not have a finite horizon ‘area’, because g11 vanishes at the
horizon: it requires a further warping approximating H . In fact, the missing
ingredient is supplied by adding momentum in the x1-direction. Since the extreme
solution is boost invariant, we cannot add momentum simply by boosting it.
The generalization arises [21] because the solutions have a null-hypersurface
orthogonal isometry which permits the replacement

(dx0)2 − (dx1)2 → (dx0)2 − (dx1)2 + HP(r)(dx0 − dx1)2 (10.144)

for an arbitrary harmonic function HP(r). This is exactly what happens if we
do a Kaluza–Klein reduction along the x1-direction but with a non-zero off-
diagonal component in the metric g01/g11 = HP(r)−1 (see exercise 7). Indeed,
the resulting metric can be obtained from a non-extreme metric by this means:
the dilaton and gauge potential form fields are unaffected. The final form of the
metric is

ds2 = H−1/4
5 H̃−3/4

1 [(dx0)2 − (dx1)2 + HP(dx0 − dx1)2]
− H−1/4

5 H̃ 1/4
1 [(dx2)2 + · · · + (dx5)2] − H 3/4

5 H̃ 1/4
1 [dr2 + r2 d�2

3].
(10.145)

We may write the harmonic functions in the form

H̃1 = 1+ r2
1

r2 H5 = 1+ L2
5

r2 HP = r2
P

r2 (10.146)

where, using (10.106), (10.131) and (10.140),

r2
1 = q1gsα

′ (2π
√

α′)4

V4
L2

5 = q5gsα
′ r2

P = ng2
s α
′ (2π

√
α′)4

V4

α′

R2

(10.147)
with R the radius of the circle upon which the x1-coordinate is compactified, and
n an integer specifying the (right-moving) momentum P = n/R on the circle.
Adding this momentum breaks a further half of the supersymmetries leaving a
total of four preserved supersymmetry charges. This corresponds to � = 1
supersymmetry in five dimensions. The ‘area’ AH of the event horizon is defined
as the (eight-dimensional) volume of the time slice at the horizon. Taking the
limit r → 0 from above, this gives a product of factors, one from each of the
three disjoint pieces of the metric:

AH = [(r−3/4
1 L−1/4

5 rP )2π R][(r1/4
1 L−1/4

5 )4V4][(r1/4
1 L3/4

5 )32π2]
= 4π3 RV4r1 L5rP . (10.148)

The surface gravity and, hence, the black-hole temperature is zero, as might be
expected from an extreme black hole (see exercise 7). Using the (generalized)
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Bekenstein–Hawking formula (10.75), the entropy Sbh associated with this
solution is

Sbh = AH

4G10
= 2π

√
q1q5n (10.149)

independently of the size of the compact dimensions and of the string coupling
gs . Thus, the entropy is determined entirely by the integers q1, q5 and n and it is
this feature that allows the identification of the associated microstates. The fact
that the entropy of a black hole at zero temperature is non-zero does not imply
a violation of the third law of thermodymamics, if indeed the analogy between
black-hole dynamics and thermodynamics is exact. The version of the third law
that suggests that there is, is a statement about the equations of state for ordinary
matter.

10.9 Counting the microstates

We have already argued that Dp-branes are sources of R–R charge and we have
also shown in (10.135) that the soliton solution (10.129) has qp units of p-brane
R–R charge. Thus, the obvious interpretation of the black-hole solution that we
have just constructed is that it is a bound state made out of q5 D5-branes and
q1 D1-branes (D-strings) with some momentum n/R. However, Dp-branes are
defined as pointlike objects in their transverse dimensions in an otherwise flat
spacetime. The R–R solitons that we have derived are only asymptotically flat, so
why do we believe that they are made of D-branes? We have noted previously that
the effective action from which these solitons derive is a good approximation so
long as the curvature is small �(G)α′ � 1. The length scale defined in (10.131),
associated with the solution (10.129), is given by L p ∼ (gsqp)

1/(7−p)
√

α′. Thus,
when gsqp > 1, the curvature is small and the soliton solutions are valid. In
fact, the effective supergravity equations were derived using string perturbation
theory, which is valid only when gs < 1. Consequently the soliton solutions
apply only when qp is large, so that the curvature is small. When the string
coupling gs is very small, the R–R solitons are very massive, as is apparent from
(10.134). However, their gravitational field is proportional to G10Mp and, since
G10 ∝ g2

s , the associated spacetime becomes flat as gs → 0. Also, the horizon
area AH = 4G10Sbh approaches zero in this limit. When it is smaller than the
string scale l2

s ≡ 4π2α′, the higher-order curvature terms become important
and the flat space description becomes valid. Provided that gsq1 � 1 and that
gsq5 � 1, we are considering weakly-coupled D-branes in a flat spacetime. In
this case, it is straightforward to count the number of configurations. We shall
return shortly to the case where gsqp > 1 in which our black-hole solutions are
valid.

The configuration in question (10.145) breaks the 10-dimensional Lorentz
symmetry SO(1, 9) → SO(1, 1) × SO(4)‖ × SO(4)⊥. The first factor acts on
the D-string world sheet (x0, x1), the second factor on the rest of the D5-brane
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world volume (x2, x3, x4, x5), and the final factor on the remining dimensions
(y6, y7, y8, y9) that are transverse to both. This symmetry forbids rigid branes
from carrying linear or angular momentum. So the question arises as to what
degrees of freedom do carry the momentum n/R. An obvious possibility is the
massless states of the open strings that begin and end on D-branes. (The massive
excitations of the D-branes have masses proportional to g−1

s and, hence, do not
play a role when the coupling is weak.) The 1–1 states, in which the open string
begins on a D1-brane and ends on a D1-brane, generate a vector supermultiplet in
the adjoint representation of the U(q1) gauge group, similarly for the 5–5 states
with gauge group U(q5). In geometrical terms, the VEVs of the scalar fields
in these supermultiplets correspond to separations of the individual D1- and D5-
branes from each other. This takes us away from the black-hole state, which
has maximal degeneracy. So instead we consider the 1–5 and 5–1 states. These
generate hypermultiplets in the (q1, q̄5)+(q̄1, q5) of U(q1)×U(q5), which gives
a total of 4q1q5 (scalar) bosons and an equal number of (Weyl) fermions. The
vacuum expectation values of the scalars are associated with the 4 coordinates
(transverse to the D1-branes) of each D1-brane giving its position relative to each
D5-brane. This configuration must be made to carry P = n/R momentum in
the x1-direction. With the four coordinates x2, x3, x4, x5 compactified on a torus
whose size is small compared to that of the circle on which x1 is compactified
(V 1/4

4 � R), we effectively have a two-dimensional field theory on the world
volume (x0, x1) of the D-string. The Hamiltonian is H = n/R and this
has to be distributed among the 4q1q5 bosons and fermions. Apart from the
(minor) complication introduced by having fermions, this is precisely the problem
discussed in section 10.4 in which we estimated the number of (bosonic) string
states having mass n (in string units).

As before, the problem may be solved using a generating function (the
partition function)

Z(w) ≡ tr wN =
∞∑

n=0

dnw
n (10.150)

where N ≡ P R and dn is the (required) number of states having eigenvalue n of
N (and, therefore, right-moving momentum n/R). Then

tr wN =
∞∏

m=1

(
1+wm

1−wm

)4q1q5

. (10.151)

The fermions give the terms in the numerator and the bosonic contribution in
the denominator is derived precisely as in (10.81). As in section 10.4, we may
estimate dn for large values of n (exercise 12) with the result [22]

dn ∼ exp
(
2π
√

q1q5n
)
. (10.152)

Hence,
ln dn ∼ 2π

√
q1q5n = Sbh (10.153)
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using (10.149). This is a spectacular result. We have recovered the Bekenstein–
Hawking formula (10.149) for the entropy of the extreme black hole (10.145)
from counting the microstates that make up this black hole. We assumed that
V 1/4

4 � R in order to simplify the counting of states but this is not essential. Since
the number of states (10.152) does not change when the radii are continuously
varied, we know that the entropy is given by (10.153) for all values of R. Also,
the states were counted in the limit gsq1 � 1 and gsq5 � 1 where we have
D-branes in flat space, whereas the black-hole solution (10.145) is valid only
when gsq1 > 1 and gsq5 > 1 so that higher-order curvature corrections are
negligible. However, because these are extreme solutions, they are protected by
their supersymmetry and we may assume that the calculated degeneracy will not
undergo renormalization by quantum effects.

This five-dimensional RN black hole utilizes three non-zero U(1) charges—
the two R–R charges q1 and q5, and the momentum n/R in the internal x1-
direction—and this is the minimum number needed to get a finite area with a
regular horizon. In four dimensions, a minimum of four non-zero charges is
needed. The result can be generalized to near-extreme black holes, in which case
the entropy becomes a function of the mass of the black hole as well as its four
charges. We shall not pursue this further. The interested reader is referred to one
of the excellent reviews [23–25] in the literature.

10.10 Problems

1. Show that a particle on a radial timelike geodesic r = R(t) in a Schwarzchild
spacetime falls from rest at r = R(0) > 2M to R = 0 in proper time

τ = π M
(

1−√
1− 2M R(0)

)−3/2
.

2. Verify that the vector lµ normal to the event horizon of a Schwarzchild black
hole has components (10.11) in Eddington–Finkelstein coordinates.

3. Verify that the Kerr–Newman metric reduces to the Reissner–Nordström
metric when the angular momentum J = 0.

4. Verify Smarr’s formula and (10.44) for the Kerr–Newman metric where the
surface gravity is κ = (r+− r−)/2(r2++a2) and the co-rotating electrostatic

potential is �H = Qr+
(r2++a2)

.

5. The surface gravity κ can be calculated directly using the formula

κ2 = − 1
2χµ;νχµ;ν |r=rH

where χ is a timelike Killing vector normal to the horizon (and normalized so
that χ2 = 1 at spacelike infinity) and the semi-colon indicates the covariant
derivative. Using the metric (10.7) and the Killing vector χµ = δ

µ
v , verify

that χ is a unit timelike Killing vector and that the previous formula is
satisfied by κ = 1/4M , as required.
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6. Calculate the Schwarzchild radius for a black hole having mass M = M�.
Calculate also its temperature and entropy.

7. By choosing new coordinates ρ = √
r − r+ and τ = it , show that near

the horizon the line element for the Reissner–Nordström black hole may be
written in the form

−ds2 � Aρ2 dτ 2 + 4A−1 dρ2 + r2 d�2
2 (10.154)

where A ≡ (r+ − r−)/r2+. Hence, show that τ is an angular coordinate with
period 4π A−1 and, therefore, that the temperature of the extreme black hole
is zero.

8. Evaluate the extrinsic curvature Kab of the Schwarzchild metric on a
spherical shell of radius R and verify equations (10.65) and (10.66).

9. Show that the � = 2 supersymmetry algebra (10.91) can be written in the
form (10.92).

10. Express the function f (w) given in (10.82) in terms of the Dedekind eta
function

η(τ) ≡ eiπτ/12
∞∏

m=1

(1− e2π imτ ).

Using the property
η(−1/τ) = (−iτ )1/2η(τ)

show that

f (w) =
(−2π

ln w

)1/2

w−1/24 exp

(
π2

6 ln w

)
f

(
4π2

ln w

)
.

Hence, show that

f (w) ∼ A(1−w)−1/2 exp

(
− π2

6(1− w)

)
for w ∼ 1

and find the power-law correction to the exponential dependence given in
(10.89).

11. For the extreme Reissner–Nordström black hole with the metric (10.94),
show that near the horizon the metric approximates Ad S2 × S2.

12. Show that the partition function Z(w) defined in (10.150) and (10.151) has
the asymptotic behaviour

Z(w) ∼ exp

(
q1q5π

2

1−w

)
for w ∼ 1

and, hence, verify the degeneracy (10.152) of states having momentum n/R.
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10.11 General references

The books and review articles that we have found most useful in preparing this
chapter are:

• Hawking S W 1973 The Event Horizon Black Holes Cours de l’Ecole d’été
de Physique Theorique, Les Houches (New York: Gordon and Breach) 1

• Townsend P K Cambridge University lecture notes on Black Holes, arXiv:gr-
qc/9707012

• Horowitz G T 1996 The origin of black hole entropy in string theory Seoul
1996, Gravitation and Cosmology 46, arXiv:gr-qc/9604051

• Johnson C V 2003 D-Branes (Cambridge: Cambridge University Press)
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